

Content

KAG excellent drives – made in Germany	4
Our portfolio	
DC and EC motors	6
Customised drive solutions	
Dimensions	
Mechanical fitting	
Specific winding	
Individual wiring	
Protection classes	
Accessories Planetary gearboxes Worm gearboxes and spur gearboxes Magnetic encoders Optical encoders	
Brakes	
Your selection options	
Our Contribution	
To agricultural technology	
To access automation	
To medical technology	
To barrier-free bus and rail technology	23
More information	

KAG excellent drives – made in Germany

For 40 years, KAG has been perfecting sophisticated, customer-specific and always reliable drive solutions for DC motors from 2.5 to 250 watts and has established itself as one of the world's leading manufacturers in this sector.

We offer cost-effective and innovative drive concepts based on decades of experience and on the steadily expanding knowhow of our development engineers – tailored to your needs if required.

Wide selection of variants and accessories

Our focus is on developing and producing compact, versatile DC and EC drives that are customised to individual applications. Thanks to the extensive expertise of our development department we can offer you exactly the right solution for your specific application.

Your system supplier for complete solutions

Thanks to our modular facilities we are able to economically produce medium (up to 20,000), large (up to 200,000) and even, upon request, very small (50 – 500) quantities. We employ lean manufacturing techniques in production cells as well as fully automated production lines.

A driving force just like our motors

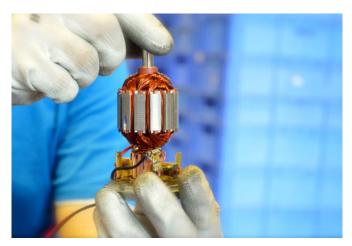
In order to bring you the best possible solutions we bring special personal resources to the table: passion for technical innovation, a high level of initiative and goaldriven commitment.

In addition to the state-of-the-art environment of our engineering and development department, our test laboratory plays a key role in the development cycle at KAG. Products that have to work perfectly are put to the test here. Digital microscopes, salt spray chambers, thermal and acoustic cameras as well as temperature, climatic and Pre-Compliance EMV test cabinets are used during the design and testing stage.

Our customers' satisfaction is our source of pride. It encourages us to produce customised products of the highest KAG quality – perfection to meet all your demands.

Our portfolio

We deliver motors that are individually customised to your special requirements to keep the entire spectrum of your options open to you.


In addition, we offer proven standard series for almost every purpose, always available at short notice.

DC and EC motors with intelligent electronics

Whether robust, brushed DC motors or extremely durable brushless EC series: What is special about the KAG range is that numerous motors are available with intelligent electronics. Our extensive experience covers a wide range of applications – ideal for adapting our motors to all application conditions.

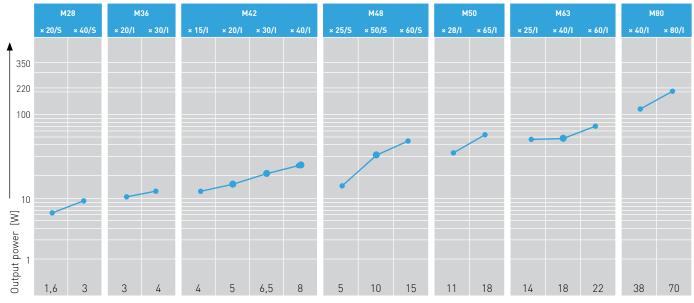
Accessories

To complete your selected drive solution, we offer a wide selection of planetary, worm and spur gearboxes as well as magnetic and optical encoders and brakes.

Our strengths

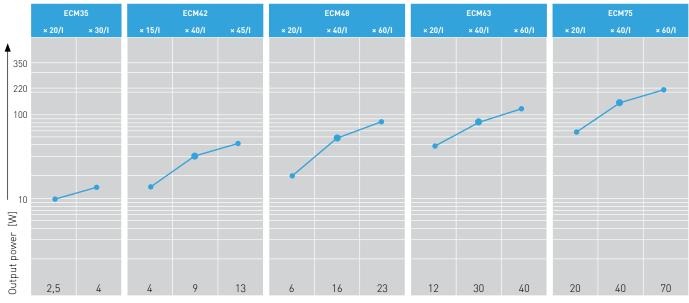
- Consulting service
- Realisation of special customer requests
- Innovative energy
- Promptness regarding tender preparation and prototype construction
- Flexibility even with complex logistics services
- Made in Germany

DC motors

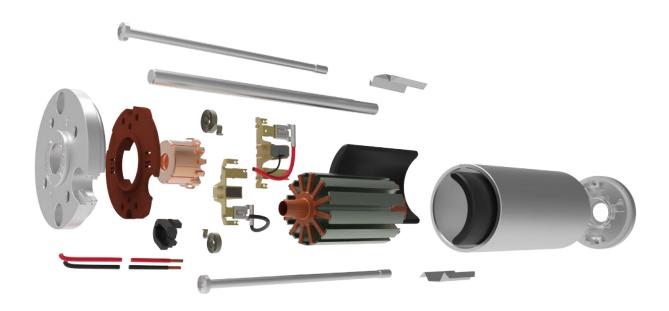

Our standard series of DC (brushed) and EC (brushless) motors form the basis for numerous application solutions and drive combinations.

Our standard range of brushed DC motors currently comprises seven standard diameter, with intelligent

electronic control on request.


The brushless drives in the EC range (ECM = Electronically Commutated Motor) are available in five standard diameters. See detailed overview from page 16.

DC motors - performance overview at 3.000 rpm



Torque [Ncm]

EC motors - performance overview at 3.000 rpm

Customised drive solutions

We develop, manufacture and supply to our customers individually adapted drives that are tailored to their needs. The advantage: The motor is adapted to your application and environment – and not your application to the motor.

We will meet all your requirements and provide the right motor for you. Our custom drives can pave the way for you to meet important environmental regulations, improve your economic performance or adapt to space constraints without losing functionality.

Tailor-made to all requirements

- Electrical parameters according to requirement
- Space optimisation
- Mechanical parameters according to requirement
- Environmental protection
- Noise and temperature control
- Energy efficiency
- Cost target

Dimensions

We can adapt housings and interfaces exactly to your space conditions – making use of every millimetre. In this way, quality drive solutions can be implemented in smallest spaces and under difficult connection conditions.

Mechanical fitting

Round shafts are the standard for our motors. Many variants are possible, such as stepped or flattened shafts, shafts with a borehole, tongue and groove and toothing.

The brushed motors can be equipped with RFI suppression circuits on request, also on circuit boards. During development, KAG can use its own EMC pre-compliance measurements to determine the optimal interference suppression variant.

The end shield can be made of die-cast zinc or turn milled aluminium. Special adapter plates and shapes of the end shield are also feasible. This can help save space as well as costs for the drive solution as required.

Individual winding

The number of windings and the wire diameter on KAG motors can be customised on request.

Skewed armatures are more expensive to manufacture, but support a high control range, lower speed and lower cogging

torque, helpful for doors that have to be opened by hand in an emergency.

Individual wiring

The wiring for power supply and control can be modified almost infinitely if desired, from single strands to entire cable harnesses.

In cooperation with our partner company KEG Kählig Elektrotechnik GmbH we can provide special cable technology solutions for special areas of application.

Protection classes

Our standard motors are regularly protection class IP 40 (brushed motors) or IP 50 (brushless motors). Protection classes up to IP 69 can be implemented according to your requirements.

Our individual drive solutions can also be provided with an exterior coating according to customer requirements.

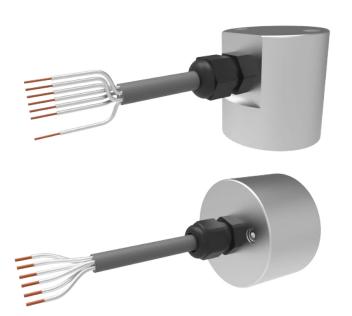
Smart electronics for your drive application

For several years now, KAG has been producing hardware and software solutions for our own EC and DC series to support the customer in precisely these areas.

High flexibility and a broad range of possible uses characterise the KAG motor solutions. So does quick

implementation of customer-specific adjustments to the firmware. All of our electronic systems permit communication with the CAN-bus via various protocols.

Overview of our integrated electronic systems


Circuit	i42	i42DC	i42LC	i63	i63DC	i75	i80DC
Max. voltage	30 V	30 V	30 V	30 V	30 V	30 V	30 V
Min. voltage	9 V	9 V	9 V	9 V	9 V	9 V	9 V
Max. current	5 A	5 A	2,6 A	10 A	10 A	15 A	20 A
Max. current peak	50 A	50 A	5 A	70 A	70 A	65 A	80 A
Nom. voltage	12 – 24 V	12 – 24 V	12 – 24 V	12 – 24 V	12 – 24 V	12 – 24 V	12 – 24 V
Operation type	4 Q	4 Q	2 Q	4 Q	4 Q	4 Q	2 Q
For motor sizes	ECM42, ECM48	M42, M48, M50	ECM42	ECM63	M63	ECM75	M80

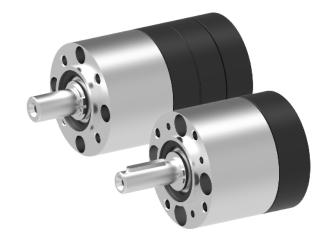
Firmware

The standard firmware for all electronic systems provides precise control of speed and position. Other requirements can be programmed customer-specifically by KAG.

Examples of implemented customer requirements:

- Motor speed control for single-grain sowing unit
- Valve control actuated via digital inputs
- Automatic door control with temperature monitoring
- Target position generator: Calculation of motor position according to customer-specific framework conditions
- Speed control according to sensor input
- Input of light barrier impulse signals
- Reading a load balance via analogue inputs
- Input of an external speed impulse

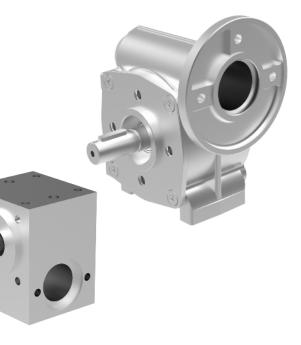
Accessories



Available accessories for your KAG drive solution include planetary, worm and spur gearboxes as well as magnetic and optical encoders and brakes in a wide selection.

Planetary gearboxes

- Steel housing, aluminium flange (PKS30, PK42, PK52: plastic)
- Great variety of gear ratios
- Multi-stage gears
- Adjustment of output shaft
- For more information, please see the specific data sheets



Overview of planetary gearboxes

	PKS30	P32	PK42	P42	PK52	P52	P62	P81
M28	Х	×						
M36		×						
M42		×	×	×	×	×		
M48			×	×	×	×		
M50			X	×	×	×		
M63					X	×	×	×
M80							×	×
ECM35		×		×				
ECM42		×		×		×		
ECM48		×		×		×		
ECM63					×	×	×	
ECM75						×	×	

Worm gearboxes

- Suitable for left and right-hand rotation in alternating, continuous and intermittent operation
- Optional adjustment of output shaft
- Optional double-sided shaft outlet
- Optional plastic toothing at i = 10:1 and 15:1 for SN31 and SN40
- For more information, please see the specific data sheets

Spur gearboxes

- Plate gear or cast housing
- Nitrided steel gears
- Steel output shaft
- Output in sintered bronze bearings
- For more information, please see the specific data sheets

Overview of worm gearboxes

	SN17	SN22,6	SN31	SN40
M28				_
M36				
M42	×	×		
M48	×	×	×	
M50	Х	×	×	
M63			×	×
M80				×
ECM35				
ECM42	×	×		
ECM48	×	×	×	
ECM63			×	×
ECM75				×

Overview of spur gearboxes

	S 1	S5	S8
M28	Χ		
M36			
M42		X	
M48		X	X
M50		Х	X
M63			X
M80			

Magnetic encoders

- Touchless and wear resistant magnetic incremental encoder
- Symmetric amplitude corresponding to supply voltage
- Open collector output
- Integrated pull-up resistors
- Operating voltage = 4,5V 24V
- Integrated design (IGMi) possible LineDriver function possible (LD)
- For more information, please see the specific data sheets

Overview of magnetic encoders

	IGM x/y	IGM x/y LD	IGMi
M28			
M36			
M42	×	×	×
M48	×	×	×
M50	×	×	×
M63	×	×	×
M80	×	×	×
ECM35			
ECM42	X	×	
ECM48	×	×	
ECM63	×	×	
ECM75	×	×	

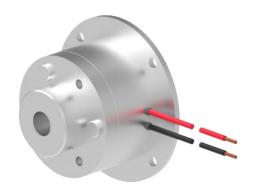
Optical encoders

- Touchless and wear-resistant optical incremental encoder
- Supplies 2 quadrative, TTL-compatible channels with phase 90° (IGO x/2 SN 110°)
- Connectors e.g. Molex plug 5-pole type 5051 with contects type 2759
- Optional: reference pulse
- Operating voltage = 5V
- For more information, please see the specific data sheets



Overview of optical encoders

	IGO x/2	IG0 x/3	IGO x/2 SN	IGO x/2 RU
M28				×
M36				×
M42	×	×	×	
M48	×	×	×	
M50	Χ	X	Χ	
M63	×	×	×	
M80	×	×	×	
ECM35				
ECM42	×	×		
ECM48	×	×		
ECM63	×	×		
ECM75	×	×		


Spring-applied brakes - B

- Electromagnetic fail-safe spring-applied brake / power-off brake
- Chromated coil housing
- Insulation class F
- Operating voltage = 24V (special voltage on request)
- For more information, please see the specific data sheets

Power-on brakes - ASB

- Electromagnetic operating current brake / power-on brake
- Chromated housing
- Insulation class E
- Protection class IP40
- No twisting and cogging torque
- Operating voltage = 24V (special voltage on request)
- For more information, please see the specific data sheets

Overview of brakes

	B37	B47	B56	B60	ASB32	ASB40	ASB43
M28							
M36							
M42	×	×			×		
M48		×			×		
M50		Χ			Χ		
M63		×	×	×	×	×	×
M80		×	×	×		×	×
ECM35							
ECM42	×	×			×		
ECM48		×			×		
ECM63		×	×	×	×	×	×
ECM75			×	×		×	×

Your selection options

						M36			
			'	M28			М	36	
		× 20/S	× 20/S	× 40/S	× 40/S	× 20/I	× 20/I	× 30/I	× 30/I
ldent. no.		220518	220519	220520	220521	220220	220221	220222	220223
Voltage [V]		12	24	12	24	12	24	12	24
Torque [A]		1,6	1,6	3	3	3	3	4	4
Speed [min-	1]	3.150	3.000	3.100	3.100	2.900	2.900	3.400	3.200
Motor length	[mm]	50	50	70	70	60	60	70	70
Shaft diamet	er [mm]	3m3	3m3	3m3	3m3	4k5	4k5	4k5	4k5
Shaft length	[mm]	12	12	12	12	20	20	20	20
	PKS30	28 – 250	28 – 250	52 – 250	52 – 250				
	P32	5 – 345	5 – 345	9 – 450	9 – 450	9 – 450	9 – 450	12 – 450	12 - 450
	PK42								
Planetary	P42								
gearboxes [Ncm]	PK52								
	P52								
	P62								
	P81								
Worm gearboxes [Ncm]	SN17								
	SN22,6								
	SN31								
	SN40		,			,			
Spur	S1	9 - 120	9 - 120	16 - 120	16 - 120				
gearboxes	S5								
[Ncm]	S8								
	i42DC								
Electronic	i63DC								
	i80DC								
Magnetic	IGM x/y								
encoders	IGM x/y LD								
	IGMi								
	IGO x/2								
Optical	IGO x/3								
encoders	IGO x/2 SN								
	IGO x/2 RU	×	×	×	×	×	×	×	×
	B37								
Spring- applied	B47								
orakes	B56								
· 	B60								
	ASB32								
Dower on	ASB40								
	ASB43								

			142					
× 15/I	× 15/I	× 20/I	× 20/I	× 30/I	× 30/I	× 40/I	× 40/I	
211112	211113	211100	211101	211102	211103	211220	211221b	
12	24	12	24	12	24	12	24	
4	4	5	5	6,5	6,5	8	9	
3.000	3.250	3.300	3.400	3.300	3.100	3.150	3.000	
70	70	75	75	85	85	95	95	
5k5	5k5	5k5	5k5	5k5	5k5	6k5	6k5	
20	20	20	20	20	20	20	20	
12 – 450	12- 450	15 – 450	15 – 450	20 – 450	20 – 450	27 – 450	27 – 450	
12 - 400	12 - 400	15 - 400	15 - 400	20 - 400	20 - 400	27 - 400	27 - 400	
12 – 862	12 – 862	15 – 1.078	15 – 1.078	20 – 1.400	20 – 1.400	27 – 1.500	27 – 1.500	
11 - 800	11 - 800	14 - 1000	14 - 1000	18 - 1000	18 - 1000	25 - 1000	25 - 1000	
12 – 862	12 – 862	15 – 1.078	15 – 1.078	20 – 1.400	20 – 1.400	24 – 1.725	27 – 1.940	
28 - 93	28 - 93	35 - 117	35 - 117	45 - 152	45 - 152	 55 - 210	55 - 210	
20 - 75	20 - 155	25 - 194	25 - 194	32 - 282	32 - 282	40 - 349	40 - 349	
20 - 133	20 - 133	25 - 174	25 - 174	32 - 202	32 - 202	40 - 347	40 - 547	
29 - 500	29 - 500	37 - 500	37 - 500	47 - 500	47 - 500	66 - 500	66 - 500	
×	×	×	×	×	×	×	×	
×	×	×	×	×	×	×	×	
×	×	×	×	×	×	×	×	
×	×	×	×	×	×	×	×	
×	×	×	×	×	×	×	×	
×	×	×	×	×	×	×	×	
×	×	×	×	×	×	×	×	
×	×	X	×	×	×	×	×	
×	×	×	×	×	×	×	×	
×	×	×	×	×	×	×	X	

Your selection options

					148		М50			
		× 25/S	× 25/S	× 50/S	× 50/S	× 60/I	× 60/I	× 28/I	× 65/I	
ldent. no.		210890	210891	210892	210893	220191	211333	223908	223907	
Voltage [V]		12	24	12	24	12	24	24	24	
Torque [A]			5	10	10	15	15	11	18	
Speed [min-	1]	2.800	2.800	3.050	3.150	3.000	3.300	2.800	2.900	
Motor length	[mm]	91	91	116	116	126	126	91	126	
Shaft diamet	er [mm]	5k5	5k5	5k5	5k5	6k5	6k5	6k5	6k5	
Shaft length	[mm]	20	20	20	20	20	20	20	20	
	PKS30									
	P32									
	PK42	15 - 400	15 - 400	30 - 400	30 - 400	45 - 400	45 - 400			
Planetary	P42	15 – 1.078	15 – 1.078	30 – 1.500	30 – 1.500	45 – 1.500	45 – 1.500	32,5 – 1.500	32,5 - 1.500	
gearboxes [Ncm]	PK52	14 - 1000	14 - 1000	28 - 1000	28 - 1000	42 - 1000	42 - 1000			
[INCIII]	P52	15 – 1.078	15 – 1.078	30 - 2.156	30 – 2.156	45 – 2.500	45 – 2.500	32,5 - 2.371	53 - 2.500	
	P62									
	P81									
	SN17	35 - 158	35 - 158	69 - 300	69 - 300	103 - 300	103 - 300			
Worm	SN22,6	25 - 194	25 - 194	44 - 388	44 - 388	75 - 500	75 - 500	55 - 426	89 - 500	
gearboxes [Ncm]	SN31	24 - 165	24 - 165	48 - 330	48 - 330	72 - 496	72 - 496	53 - 363	87 - 594	
[INCIII]	SN40									
Spur	S1									
gearboxes	S5	37- 500	37 - 500	73 - 500	73 - 500	110 - 500	110 - 500	73 - 500	124 - 500	
[Ncm]	S8	131 - 800	131 - 800	262 - 800	262 - 800	394 - 800	394 - 800	262 - 800	446 - 800	
	i42DC	×	×	×	×	×	×	×	×	
Electronic	i63DC									
	i80DC									
	IGM x/y	×	×	×	×	×	×	×	×	
Magnetic encoders	IGM x/y LD	×	×	×	×	×	×	×	×	
encoders	IGMi	×	×	×	×	×	×	×	×	
	IGO x/2	×	×	×	×	×	×	×	×	
Optical	IGO x/3	×	×	×	×	×	×	×	×	
encoders	IGO x/2 SN	×	×	×	×	×	×	×	×	
	IGO x/2 RU									
	B37									
Spring-	B47	×	×	×	×	×	×	×	×	
applied brakes	B56									
	B60									
D	ASB32	×	×	×	×	×	×	×	×	
Power-on brakes	ASB40									
DIAKES	ASB43									

			M63			M80			
× 25/I	× 25/I	× 40/I	× 40/I	× 60/I	× 60/I	× 40/I	× 40/I	× 80/I	× 80/I
210950	210961	210951	210962	220311	210963	222784	222334	224504	222335
12	24	12	24	12	24	12	24	12	24
14	14	18	18	22	30	38	38	70	70
3.300	3.250	2.550	2850	3.150	3.000	2.850	2.900	2850	3.200
95	95	110	110	130	130	132	132	172	172
8g6	8g6	8g6	8g6	8g6	8g6	12g5	12g5	12g5	12g5
25	25	25	25	25	25	30	30	30	30
39 - 1.000	39 - 1.000	50 - 1.000	50 - 1.000	83 - 1.000	83 - 1.000				
42 – 2.500	42 – 2.500	54 - 2.500	54 - 2.500	65 – 2.500	89 – 2.500				
42 - 3.018	42 - 3.018	53 - 3.881	53 - 3.881	65 – 5.000	89 – 5.000	112 – 5.000	112 - 5.000	207 - 5.000	207 - 5.00
42 - 3.018	42 - 3.018	54 - 3881	54 - 3881	65 - 5082	89 - 6930	112 – 8.193	112 – 8.193	207 – 12.000	207 – 12.00
68 - 462	68 - 462	87 - 594	87 - 594	106 - 990	106 - 990				
104 - 441	104 - 441	133 - 567	133 - 567	163 - 945	163 - 945	281 - 1197	281 - 1197	518 - 2205	518 - 2205
367 - 800	367 - 800	472 - 800	472 - 800	787 - 800	787 - 800				
×	×	×	×	×	×				
						×	×	×	×
×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×

Your selection options

		ECM35		ECM42			ECM48		
		× 20/I	× 30/I	× 15/I	× 40/I	× 45/I	× 20/I	× 40/I	× 60/I
ldent. no.		230543	230544	230528	230527	230488	230546	230547	230548
Voltage [V]		24	24	24	24	24	24	24	24
Torque [A]		2,5	4	4	9	13	6	16	23
Speed [min-1]		3.800	3.600	3.500	3.200	3.100	3.050	3.550	3.550
Motor length [mm]		72	82	70	85	100	80	100	120
Shaft diameter [mm]		4g5	4g5	6g5	6g5	6g5	6g5	6g5	6g5
Shaft length [mm]		20	20	20	20	20	20	20	20
	P32	8 – 450	12 – 450	11 – 450	27 - 450	39 – 450	18 - 450	47 - 450	68 - 450
Planetary	P42	8 – 539	12 – 862	11 – 800	27 – 1.500	39 – 1.500	18 – 1.294	47 – 1.500	68 – 1.500
gearboxes	PK52								
[Ncm]	P52			12 – 862	27 - 1.940	39 - 2.500	18 - 1.293	47 - 2.500	68 – 2.500
	P62								
	SN17			28 - 126	62 - 284	90 - 300	41 - 189	110 - 300	159 - 300
Worm gearboxes [Ncm]	SN22,6			20 - 155	45 - 349	65 - 500	30 - 233	74 - 500	114 - 500
	SN31						29 - 198	77 - 528	111 - 759
	SN40								
	i42			×	×	×	×	×	×
	i42LC			×	×	×	×	×	×
Electronic	i63								
,	i75								
Magnetic encoders	IGM x/y			×	×	×	×	×	×
	IGM x/y LD			×	×	×	×	×	×
Optical encoders	IGO x/2			×	×	×	×	×	×
	IGO x/3			×	×	×	×	×	×
Spring- applied brakes	B37			×	×	×			
	B47			×	×	×	×	×	×
	B56								
	B60								
Power-on brakes	ASB32			×	×	×	×	×	×
	ASB40								
	ASB43								
	, 10040								

	ECM63		ECM75					
× 20/I	× 40/I	× 60/I	× 20/I	× 40/I	× 60/I			
230532	230531	230493	230549	230550	230551			
24	24	24	24	24	24			
12	30	40	20	40	70			
3100	2.600	2.850	2.750	2900	3.000			
90	110	130	101,5	121,5	141,5			
8g5	8g5	8g5	10g5	10g5	10g5			
25	25	25	30	30	30			
33 - 1000	83 - 1000	111 - 1000						
36 – 2.500	89 – 2.500	118 – 2.500	59 – 2.500	118 – 2.500	207 – 2.500			
36 – 2.587	89 – 5.000	118 – 5.000	59 – 4.312	118 – 5.000	207 – 5.000			
58 - 396	145 - 990	193 - 1200						
89 - 378	222 - 945	296 - 1260	148 - 630	296 - 1260	518 - 2205			
×	×	×						
			×	×	×			
×	×	×	×	×	×			
×	×	×	×	×	×			
×	×	×	×	×	×			
×	×	×	×	×	×			
×	×	×						
×	×	×	×	×	×			
×	×	×	×	×	×			
×	×	×						
×	×	×	×	×	×			
×	×	×	×	×	×			

Our Contribution

... to agricultural technology

Our drives for agricultural technology help secure the future supply with agricultural goods. KAG-drives are designed specifically for the rough areas in agriculture. The motors, usually designed for 12 V, have high degrees of protection, which makes it possible to use them outdoors easily and also allows cleaning them with high pressure water.

Special surface refinement protects the drives from aggressive media, such as fertilisers or hydraulic oil. To meet the request of digitalisation in agriculture, we have dealt with decentralized, bus-capable drives early on and now offer diverse solutions.

Use of special cables, such as hybrid cables with robust connectors in high protection class simplify connecting enormously and are ready to face nearly any demand. On request, the drives can be painted to the customers CI colours and specifications.

- In seeding and harvesting machines
- In fertiliser and granulate spreaders
- In potato planting machines

... to access automation

We can no longer imagine our everyday lives without automatically opening doors and turnstiles. No public building would go without automated door technology today. The trend to increased comfort grows stronger in private areas as well. Reliable and space-saving drive systems must be provided for this.

Our solutions offer high functional safety by reduction of the resetting torques, e.g. in rotary door drives and other automatic doors, as well as better protection against damage by vandalism. Thermal monitoring elements and switches serve continuous protection of the system.

High protection types make additional casings unnecessary.

- In lift doors, rotary doors and automatic doors
- In person separators and passage barriers
- In room separating walls, etc.

... to medical technology

Health requires medicine technology. Due to demographic change, innovative medicine-technology devices are needed more and more. The needs of the aging society increase and demand simple and reliable, as well as comfortable, solutions. This leads to new demands to drive technology.

From rescue to preserving human lives to restoration of health, we are represented in a great many different applications with our motors and drive solutions.

Good control properties within a larger control area and a high efficiency of our drives ensure availability and performance of medical systems. Complex integrated EMC filters for compliance with strict standards in medicine technology. Mobile systems remain usable for longer periods of time thanks to the low current consumption of our drives and the connected longer battery service lives.

- In pumps, dialysis devices and centrifuges
- In person lifters and stair lifts
- In operating tables, etc.

... to barrier-free bus and rail technology

The legislators demand accessible entrance in public transport such as train or buses. Automatically opening doors or entrance helps like sliding steps: Increasingly sophisticated systems for increased safety, comfort and integration become the general standard in equipment of often-used means of transport.

OEMs and operators make use of the decades of experience KAG has in the area of drive systems for bus and train technology. Our drives for use in bus and train are designed for a high vibration resistance. In our climate cabinets, we also review reliability of the drives in light of extreme environmental conditions.

Required operating cycles are reviewed for supporting your $T\ddot{U}V$ acceptance.

- In bus and railway doors
- In ramps and steps
- In sanding systems and switchgear
- In mirror adjustments

More information

Would you like to know more or do you need further information on the individual application areas for KAG motors?

See our application brochures for agricultural technology, medical technology, access automation und barrier-free

bus/rail technology for the key facts about the respective scope of performance of our motors in your area of application. We will gladly send you our brochures on request.

We will be pleased to answer your questions and requests personally at any time.

For 40 years, KAG has been perfecting sophisticated, customer-specific and always reliable drive solutions for DC motors from 2.5 watts. Our service model is characterised by speed and flexibility as well as high customer orientation.

Kählig Antriebstechnik GmbH

Pappelweg 4 30179 Hannover / Germany Phone: +49 (0) 511 67493-0 Fax: +49 (0) 511 67493-67 info@kag-hannover.de