Tritex I®AC and DC

TRITEX I® ${ }^{\circledR}$ SERIES

 FULLY INTEGRATED SERVO DRIVE/MOTOR/ACTUATORLinear or Rotary configurations AC or DC powered models Multiple networking options
 AC Actuator

Tritex II Rotary
AC Actuator

Tritex II ${ }^{\circledR}$ Overview

Tritex ${ }^{\circledR}$ Series

Fully Integrated Drive/Motor/Actuator

By combining the latest electronic power technology with advanced thermal management modeling technology, Exlar® has set a new benchmark for electric actuator performance versus size. Tritex II actuators now integrate an AC or DC powered servo drive, digital position controller, brushless motor and linear or rotary actuator in one elegant, compact, sealed package. Now you can distribute motion control and resolve your application challenges with one integrated device. Simply connect power, I/O, communications and go!

Dramatically Reduce Space Requirements

Tritex II actuators are the highest power density, smallest footprint servo drive devices on the market. Finally, you can incorporate a fully electronic solution in the space of your existing hydraulic or pneumatic cylinder. You can also eliminate troublesome ball screw actuators or bulky servo gear reducers. And the space previously consumed by panel mount servo drives and motion controllers is no longer needed. Tritex II actuators may also reduce the size of your machine design while significantly improving reliability.

Reduce Costs

Now you can eliminate the labor costs for mounting and wiring panels because the Tritex II houses the servo drive, digital positioner, and actuator in one convenient package. Cable costs are also significantly reduced by eliminating the need for expensive, high-maintenance specialty servo cables. All that is required is an economical standard AC or DC power cord, and standard communication cable for digital and analog I / O.

These actuators also eliminate the issues associated with power signals and feedback signals traveling long distances from servo drive to servo motor. With the Tritex II, the servo drive and motor are always integrated in the same housing.

Flexible Communications

Multiple feedback types, including absolute feedback, allow you to select the system that is best-suited for your application. Digital and analog I/O, plus popular communication networks, such as Modbus TCP, Ethernet/IP, and PROFINET IO, allow the Tritex II to become an integral part of your control architecture or machine control processes.

Improves Power, Performance, and Reliability

Tritex Il actuators give you unrivaled power, performance, and reliability. No longer are you limited to trivial amounts of force or speeds so slow that many motion applications are not possible.

Tritex II AC Actuator

- Continuous force to $3225 \mathrm{lbf}(14 \mathrm{kN})$
- Peak force to $5400 \mathrm{lbf}(24 \mathrm{kN})$
- Speed to $33 \mathrm{in} / \mathrm{sec}(800 \mathrm{~mm} / \mathrm{sec})$
- 1.5 kW servo amplifier
- Temperature operation range $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
- AC power $100 \mathrm{~V}-240 \mathrm{~V},+/-10 \%$

Tritex II DC Actuator

- Continuous force to $872 \mathrm{lbf}(4 \mathrm{kN})$
- Peak force to $1190 \mathrm{lbf}(5 \mathrm{kN})$
- Speed to $33 \mathrm{in} / \mathrm{sec}(800 \mathrm{~mm} / \mathrm{sec})$
- 750W servo amplifier
- Temperature operation range $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
- DC power 12-48 VDC nominal

Alternative Systems

Linear Applications

Tritex Il linear actuators employ a superior inverted roller screw mechanism for converting rotary motion to highly robust and long-life linear motion. These characteristics enable the Tritex actuator to solve applications that previously required pneumatic or hydraulic cylinders. No additional mechanisms (such as acme or ball screws) are necessary to convert the actuator's rotary power into linear motion in order to move the load.

Ideal for mobile and remote applications using DC power sources, the Tritex II DC actuators have the power needed to perform. The simple to configure, yet robust interface software allows either the AC or DC Tritex II actuators to perform nearly any motion control application. The Tritex II linear actuator can be programmed to follow an analog command signal, making it ideal for controlling valves and dampers in process control applications or adjustment mechanisms on mobile equipment.

Longer Stroke Lengths

If your application requires a stroke length greater than the 18 inches available with Tritex II linear units, consider mounting a rotary Tritex II actuator to an Exlar universal actuator. This combination extends stroke length up to 40 inches. Please contact Exlar for more details.

Tritex II Models

Tritex II AC Models

- T2X high mechanical capacity actuator, 75,90 , and 115 mm
- R2M rotary motor, 75, 90, and 115 mm
- R2G rotary gearmotor, 75,90 , and 115 mm

Tritex II DC Models

- TDX high mechanical capacity actuator, 60 and 75 mm
- RDM rotary motor, 60,75 , and 90 mm
- RDG rotary gearmotor, 60,75 , and 90 mm

Feedback Types (All Models)

- Analog Hall w/1000 count resolution
- Incremental encoder with 8192 count resolution
- Absolute Feedback (analog hall with multi-turn, battery backup)

Communications \& I/O

The I/O count and type varies with each actuator model and option selected. Please see page 45 for Tritex II AC and page 72 for Tritex II DC models.

Standard Communications (All Models):

- 1 RS485 port, Modbus RTU, opto-isolated for programming, controlling and monitoring

Rotary Applications

Tritex II rotary motors and gearmotors provide high response and precise control of a rotatable shaft, similar to that found in any electric motor. The difference is that with Tritex II you can program (via your PC) the rotational speed and position of the output shaft in response to external commands. For example, the motor can be commanded to rotate at a controlled velocity and to precisely stop at a preprogrammed position. You can also program the unit to run at a preset velocity until a switch input is received or a preprogrammed torque level is produced against a load. Alternatively, the rotary Tritex II actuators can be set up to follow an analog signal-either voltage or current-representing your choice of torque, velocity, or position.

Signals for initiating the preprogram-med velocity and position commands come from optically isolated inputs or directly via network communications. Likewise, isolated output commands of the status and events enable precise coordination with your system controls or machine operator.

Optional Internal Gear Reducer

If your application requires greater torque and less speed than the base unit provides, the Tritex II is available with an integral servo grade planetary gear reducer. Gear ratios of 4:1 to 100:1 allow the power of Tritex II to be applied over a broad range of torque requirements.

Tritex II linear actuator with customer-supplied cable glands ports

Tritex II Overview

Tritex II Series Operation

The Tritex II Series actuators can operate in one of five different motion-producing modes. These modes solve an endless variety of applications in industrial automation, medical equipment, fastening and joining, blow molding, injection molding, testing, food processing, and more.

Programmed functions are stored in the Tritex II non-volatile memory. A standard RS485 serial interface allows control, programming, and monitoring of all aspects of the motor or actuator as it performs your application. Optional communications protocols are available.

Tritex Option Boards

- Option boards offer adding functionality to the base Tritex II actuators
- Terminal board for customer I/O
- Isolated 4-20mA analog input and output
- Communication buses
- EtherNet/IP
- Modbus TCP
- PROFINETIO

Connectivity

- Internal terminals accessible through removable cover (select models)
- Threaded ports for cable glands (select models)
- Optional connectors
- M23 Power - M23/M16 I/O
- M8 connector for RS485
- M12 connector for EtherNet options
- Embedded leads (select models)

Operating Modes

1. Move to a position (or switch)

The Tritex II Series actuators allow you to execute up to 16 programmed positions or distances. You may also use a limit switch or other input device as the end condition of a move. This combination of index flexibility provides a simple solution for point-to-point indexing.
2. Move to a preset force or torque The Tritex II Series allows you to terminate your move upon the achievement of a programmed torque or force. This is an ideal mode for pressing and clamping applications.
3. Position proportional to an analog signal Ideal for process control solutions, the Tritex II Series provides the functionality to position a control valve by following an analog input signal. Therefore, it delivers precise valve control - which cannot be achieved by other electric, hydraulic, or pneumatic actuators.
4. Velocity proportional to an analog signal Tritex II actuators offer you the capability to control velocity with an analog signal. This is particularly useful with Tritex II rotary motors which offer precise control of the speed of any process or operation.
5. Force/torque proportional to analog signal Perfect for pressing and torquing applications, you can control torque with an analog input while in torque mode.

Selectable Input Functions

- Enable •Execute Move (0-15) • Dedicated Position • Jog+
- Jog- • Jog Fast • Home • Extend Switch • Retract Switch
- Home Switch •Teach Enable •Teach Move (1-16)
- Select Move •Stop • Hold •Reset Faults
- Alternate Mode (allows you to switch between 2 operating modes)

Selectable Output Functions

-Enabled • Homed • Ready (Enabled and Homed)

- Fault - Warning •Fault or Warning Active
- Move (0-15) in Progress • Homing •Jogging
- Jogging+ • Jogging- •Motion • In Position
- At Home Position • At Move (0-15) • Position
- Stopped • Holding • In Current Limit • In Current Fold Back
-Above Rated Current • Home

Expert User Interface

Expert, the Tritex II user interface software, provides you with a simple way to select all aspects of configuration and control required to set up and operate a Tritex II actuator. Easy-to-use tabbed pages provide access to input all of the parameters necessary to successfully configure your motion application. 'Application' files give you a convenient way to store and redistribute configurations amongst multiple computers, and 'Drive' files allow the same configuration to be distributed to multiple Tritex II actuators. Motion setup, homing, teach mode, tuning parameters, jogging, I/O configurations, and local control are all accomplished with ease using Expert software.

Protocol Options

The standard communication protocol for Tritex is an RS485 connection using Modbus RTU. The Modbus protocol provides a simple and robust method to connect industrial electronic devices on the same network. The Expert software acts as a Modbus Master and the Tritex II acts as the Slave device, only responding to requests commanded through the software. The Expert software allows full access to commissioning, configuring, monitoring, and controlling the Tritex II.

In addition the following protocol options are available by selecting the communication option boards. Exlar requires initial commissioning of a Tritex II actuator to be performed with the Modbus protocol.

Modbus TCP

Modbus TCP couples Modbus communication structure from Modbus RTU with EtherNet connectivity. The Modbus TCP option is fully supported by the Expert software and offers seamless
commissioning, configuring, monitoring and controlling the Tritex II. Communication protocol DSP 301 is supported as well as DSP 402 supporting Profile Torque, Profile Velocity, Profile Position and Homing. Setup on the system is most easily achieved with the Expert software using the RS485 port. A Modbus mapping table allows you to map all of the parameters you wish to read and modify into a register bank of up to 100 registers. This allows a PLC program to perform a single read operation and a single write operation to all the parameters.

EtherNet/IP

EtherNet/IP allows you to change, monitor, and control the Tritex II through implicit or explicit messaging initiated from your Rockwell PLC. Tritex parameters are set up through the Expert software using a Tritex II parameter to EtherNet/IP parameter mapping table. Up to 100 input, and 100 output 16 bit registers can be mapped to Tritex II parameters.

PROFINET IO

PROFINET IO allows you to change, monitor and control the Tritex II from your Siemens PLC. Tritex parameters are set up through the Expert software using a Tritex II parameter to PROFINET IO parameter mapping table. Up to 100 input and 100 output, 16 bit registers can be mapped to Tritex II parameters.

Modbus Mapping Screen

Motion Setup

Exlar configuration provides several templates for various applications. These can serve as your configuration, or as a starting point for your configuration. You can also begin by selecting configuration details specific to your application. At the click of a button, you can configure a move to position, move to switch, or move to force motion. Tritex II products offer absolute and incremental motion, as well as moves ending on a condition, such as a specific force or torque.

Control Page

The Expert control page gives you the ability to initiate all motion functions from one simple screen. This screen provides you with very easy system start-up and testing, without all the inconvenience of machine wiring.

The control page offers the capability to enable and disable the drive, and perform fast and slow jogs. This gives you the ability to verify motion, before needing any I/O wiring.

Monitoring and Diagnostics

All input functions can be monitored and activated from the Expert monitor page, and all output functions can be monitored. Critical fault and status data is available as a separate page, or as a fixed window on the bottom of each page of the software.

Configuring I/O

A drop down menu allows all I/O to be set up in a matter of minutes. Inputs can be configured to be maintained or momentary, depending on the application requirements. Input and output logic can be inverted with a single click.

Scope

The Expert Software includes a four-channel digital oscilloscope feature.

EtherNet IP Mapping Screen

You can select up to four Tritex drive parameters to be monitored simultaneously.

For high speed requirements, the data can be captured in the drive's memory at an adjustable rate, down to 100 micro seconds, and then uploaded for plotting. The plots can be saved or printed, and the captured data can be saved as a comma separated file for further analysis with Excel.

Homing

You can home to an input, by using a proximity or limit switch, or home to a specific force or torque.

Homing to a force or torque is ideal for setting up applications that require motion referenced to a hard stop, like the closed position of a valve, or the final position of a press.

Teach Mode

In this mode, you can jog the actuator to the desired position, and activate an input. Alternatively, you can click a button in the Expert software and the current position of the actuator becomes the defined distance or absolute position associated with a particular move command.

Scope

Process Control Functionality

Precise valve and damper control are perfect applications for Tritex II actuators. They outperform other electric, hydraulic and pneumatic actuators by providing small hysteresis and dead band, quick response to small signal changes, and stable dynamic responses. Fully programmable to follow an analog or digital signal representing either position or force, the Tritex II linear actuator is well suited for control valve applications with thrust requirements up to 3225 lbf or rotary torque applications up to 95 Ibf-in continuous.

The Tritex II Rotary actuators are also ideal for directly operating quarter-turn valves. Gear ratios of $4: 1$ to 100:1 allow the power of Tritex II to be applied to a broad range of applications, providing high turndown without loss of accuracy.

Additionally, Tritex II actuators can be mounted on any valve from any manufacturer giving you maximum flexibility.

Valve Software

The valve software is simple to use and features a teach mode for foolproof stroke configuration. A programmable valve cut off position enables a firm valve seat on either new valves or retrofitted valves. Several diagnostics and auxiliary l/O options are also available.

Class I, Division 2 Rating

Exlar Tritex II actuators are available for applications requiring CSA Class I Division 2 certification. Ordering a standard I/O interconnect with or without 4-20 mA Analog I/O, and the N option for the NPT port will provide you with a Class I Division 2 rated product.

Benefits for Process Control Applications

Extreme Accuracy

The Exlar actuators stroke the valve based on position, not air or oil pressure. Accuracy and repeatability are better than 0.1%.

100\% Duty Cycle

A roller screw provides a unique way of converting rotary motor motion to a linear force, and offers full modulation capability. Life is measured in hundreds of million strokes vs. thousands like typical electric actuators.

Built in Positioner

Tritex II actuators include a built in positioner with a $4-20 \mathrm{~mA}$ or digital signal to tell you the exact stroke position. An analog output is also available.

Flexibility

These actuators include digital I/O and analog control. This provides the user with options for additional control such as emergency stop, +/- jog, or various diagnostic conditions.

Low Power Consumption

The Tritex II actuator only uses the current needed for a given force. This extreme efficiency makes it suitable for use with solar panels and batteries.

Fast Response and Stroke Speeds

Most other electric actuators are known for being slow-a major disadvantage. Tritex II response rate is measured in milliseconds. Stoke speeds can be up to $33 \mathrm{in} / \mathrm{sec}$.

Hydraulic Replacement

Tritex actuators have the same capabilities as a hydraulic equivalent, but without the cost or maintenance issues. High force, fast speeds and precise movements make it a superior substitute for hydraulic applications.

Absolute Feedback

The absolute feedback option gives the actuator memory after teaching the valve limits. So upon power loss, the battery backup will maintain the valve limits.

Diagnostics

All inputs and outputs can be monitored including position, temperature, current, and many more. An oscilloscope feature allows you to select up to four parameters to be monitored simultaneously. The data can be captured in the drive's memory at an adjustable rate, down to 100 micro sec, and then uploaded for plotting.

Tritex II Agency Approval

If your application requires CSA Class I, Division 2 Certification, please order the " N " connection option for the NPT port. This, in combination with one of the following I/O option boards, will provide Class I, Division 2 Certification:

Shown below are additional agency approvals applied to Tritex II Actuators.

Tritex II DC Standards/Agency Approvals

Agency/Standard	Tritex II Models/Options
CE, EMC EN61800-3	All models
CSA 139	All models, when supply voltage is 24 VDC or less
CSA Class I, Div 2, Groups A, B, C, D	75 and 90 mm frames require NPT connection option (N/A with 60 mm frame)
IP Rating	TDX $=$ IP65S, RDM/G $=$ IP65
Vibration Rating	IEC $60068-2-64$ random vibration standard, $5 \mathrm{~g} \mathrm{rms}, 50$ to 500 Hz.
ODVA	EIP
PROFINET	PIO

Tritex II AC Standards/Agency Approvals

Agency/Standard	Tritex II Models/Options
CE, EMC EN61800-3, Safety EN 61800-5-1	All options
CSA 139	All options
CSA Class I, Div 2, Groups A, B, C, D	Requires NPT connection option. Option Board EIN, PIN, TCN, and SIO, or IA4
UL 508 C, Type 4 Enclosure T2M090/R2M090 T2M115/R2M115	Requires NPT connection option. Option Board EIN, PIN, TCN, and SIO, or IA4
IP Rating	$\begin{aligned} & \mathrm{TDX}=\mathrm{IP} 65 \mathrm{~S}, \mathrm{~T} 2 \mathrm{X}=\mathrm{IP} 65 \mathrm{~S} \\ & \mathrm{R} 2 \mathrm{M} / \mathrm{G} \& \mathrm{RDM} / \mathrm{G}=\mathrm{IP} 65 \mathrm{~S}, \mathrm{R} 2 \mathrm{M} / \mathrm{G} 075, \mathrm{RDM} / \mathrm{G} 075=\mathrm{IP} 65 \mathrm{~S} \end{aligned}$
Vibration Rating	IEC 61800-5-1 safely standard for drives. 1 g peak, up to 150 Hz for <2 hrs. IEC 60068-2-64 random vibration standard, $2.5 \mathrm{~g} \mathrm{rms}, 5$ to 500 Hz .
ODVA	EIP

[^0]
Tritex II AC

No Compromising on Power, Performance or Reliability

With forces to approximately $3,225 \mathrm{lbf}(14 \mathrm{kN})$ continuous and $5,400 \mathrm{lbf}$ peak (24 kN), and speeds to $33 \mathrm{in} / \mathrm{sec}(800 \mathrm{~mm} / \mathrm{sec})$, the AC Tritex II linear actuators also offer a benefit that no other integrated product offers: POWER! No longer are you limited to trivial amounts of force, or speeds so slow that many motion applications are not possible. And the Tritex II with AC power electronics operates with maximum reliability over a broad range of ambient temperatures: $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$. The AC powered Tritex II actuators contain a 1.5 kW servo amplifier and a very capable motion controller. With standard features such as analog following for position, compound moves, move chaining, and individual force/ torque control for each move, the Tritex II Series is the ideal solution for most motion applications.

Tritex II Models

- T2X high mechanical capacity actuator- 75,90 , and 115 mm
- R2M rotary motor
- R2G rotary gearmotor

Power Requirements

- AC Power 100V-240V, $+/-10 \%$, single phase
- Built-in AC line filter
- Connections for external braking resistor

Feedback Types

- Analog Hall with 1000 count/motor rev resolution
- Incremental encoder with 8192 count resolution
- Absolute Feedback (analog hall with multi-turn, battery backup)

Connectivity

- Inernal terminals acessible through removable cover
- Threaded ports for cable glands
- Optional connectors:
-M23 Power -M16 I/O (M23 on 75 mm)
- M8 connector for RS485
- M12 connector for Ethernet options
- Custom connection options

Technical Characteristics	
Frame Sizes in (mm)	$2.9(75), 3.5(90), 4.5(115)$
Screw Leads	$0.1(2), 0.2(5), 0.5(13), 0.75(19)$
Standard Stroke Lengths in (mm)	$3(76), 4(102), 6(152), 10(254), 12(305)$, $14(356), 18(457)$
Force Range	up to $3225 \mathrm{lbf}(14 \mathrm{kN})$
Maximum Speed	up to $33.3 \mathrm{in} / \mathrm{s}(846 \mathrm{~mm} / \mathrm{s})$

Operating Conditions and Usage		
Accuracy:		
Screw Lead Error	$\begin{aligned} & \text { in/ft } \\ & (\mu \mathrm{m} / 300 \mathrm{~mm}) \end{aligned}$	0.001 (25)
Screw Travel Variation	$\begin{aligned} & \text { in/ft } \\ & (\mu \mathrm{m} / 300 \mathrm{~mm}) \end{aligned}$	0.0012 (30)
Screw Lead Backlash	in	0.004 (T2X),
Ambient Conditions:		
Standard Ambient Temperature	${ }^{\circ} \mathrm{C}$	0 to 65
Extended Ambient Temperature**	${ }^{\circ} \mathrm{C}$	-40 to 65
Storage Temperature	${ }^{\circ} \mathrm{C}$	-40 to 85
IP Rating		$\begin{aligned} & \text { T2X }=\text { IP65S } \\ & \text { R2MR2G }=\text { IP65S } \\ & \text { R2M/G075 }=\text { IP66S } \end{aligned}$
NEMA ratings $\begin{aligned} & \text { T2X090/R2M090 } \\ & \text { T2X115/R2M115 }\end{aligned}$		UL Type 4 UL Type 4
Vibration		$2.5 \mathrm{~g} \mathrm{rms}, 5$ to 500 hz

* Ratings for R2M075 at $40^{\circ} \mathrm{C}$, operation over $40^{\circ} \mathrm{C}$ requires de-rating. Ratings for R2M090 and R2M115 at $25^{\circ} \mathrm{C}$, operation over $25^{\circ} \mathrm{C}$ requires de-rating.
**Consult Exlar for extended temperature operation.

Tritex II AC Overview

Communications \& I/O

Digital Inputs:

10 to 30 VDC Opto-isolated

Digital Outputs:

30 VDC maximum
100 mA continuous output Isolated

Analog Input AC:

$0-10 \mathrm{~V}$ or $+/-10 \mathrm{~V}$

$0-10 \mathrm{~V}$ mode, 12 bit resolution
+/-10V mode, 12 bit resolution on 90/115, 13 bit resolution on 75 assignable to Position, Velocity,
Torque, or Velocity Override commands.

Analog Output AC:

0-10V
12 bit resolution on 90/115, 11 bit resolution on 75

IA4 option:

4-20 mA input
16 bit resolution Isolated
Assignable to Position, Velocity, or Torque command
4-20 mA output
12 bit resolution
Assignable to Position, Velocity, Current, Temperature, etc

Standard Communications:

- 1 RS485 port, Modbus RTU, opto-isolated for programming, controlling and monitoring

The IO count and type vary with the actuator model and option module selected.

All models include isolated digital IO, and an isolated RS485 communication port when using Modbus RTU protocol.

Tritex II AC I/O	75/90/115 $\mathbf{~ m m}$ frame with SIO, EIP, PIO, TCP	$\mathbf{9 0 / 1 1 5} \mathbf{~ m m}$ frame with IA4	75 mm frame with IA4
Isolated digital inputs	8	8	4
Isolated digital outputs	4	4	3
Analog input, non isolated	1	1	0
Analog output, non isolated	1	1	0
Isolated 4-20ma input	0	1	1
Isolated 4-20ma output	0	1	1

Tritex II AC Overview

Product Features

1 - Standard Straight Threaded Port with Internal terminals, M20 $\times 1.5$
2 - NPT Threaded Port via Adapter with Internal Terminals, $1 / 2^{\prime \prime}$ NPT
3 - Intercontec Style - Exlar standard, M16/M23 Style Connector 4 - Front flange 5 - Rear clevis
6 - Double side mount and metric double side mount 7 - Extended tie rods and metric extended tie rods 8 - Metric rear clevis
9 - Side trunnion and metric side trunnion 10 -Rear flange 11 - Male, metric thread 12 -Female, metric thread 13 -Male, US standard thread
14 - Female, US standard thread 15 - External anti-rotate 16 - External limit switch - N.C., PNP 17 - External limit switch - N.O., PNP
18 - Rear brake 19-Protective bellows 20-Splined main rod-Female 21-Splined main rod-Male

Industries and Applications

Hydraulic cylinder replacement
Ball screw replacement
Pneumatic cylinder replacement

Automotive

Clamping
Dispensing
Automated Assembly
Flexible Tooling
Food Processing
Depositing
Slicing
Diverters / Product Conveyance
Sealing

Process Control
Oil \& Gas Wellhead Valve Control
Pipeline Valve Control
Damper Control
Knife Valve Control
Chemical pumps
Entertainment / Simulation
Ride Motion Bases
Animatronics
Medical Equipment
Volumetric Pumps

Plastics

Forming
Part Eject
Core Pull

Material Handling

Robotic End Effectors
Edge Guiding

Exlar actuators can provide precision at high force loads for fluid dispensing in a medical environment.
Efficient food processing and packaging operations demand robust technologies that are powerful, durable, precise, and safe for food. Exlar products are ideal for these for harsh, high-capacity production environments

Mechanical Specifications
T2X075

		Stator	1 Stack	2 Stack	3 Stack
Lead		RPM @ 240 VAC	4000	3000	2000
0.1	Continuous Force	$1 \mathrm{bf}(\mathrm{N})$	$589(2,620)$	$990(4,404)$	NA
	Peak Force	$1 \mathrm{lbf}(\mathrm{N})$	1,178 (5,240)	1,980 (8,808)***	NA
	Max Speed	in/sec (mm/sec)	6.67 (169)	5.00 (127)	NA
	T2X - Ca (Dynamic Load Rating)	lbf (N)	5516 (24536)		NA
0.2	Continuous Force	lbf (N)	$334(1,486)$	$561(2,496)$	$748(3,327)$
	Peak Force	lbf (N)	668 (2,971)	1,122 (4,991)	1,495 (6,650)
	Max Speed	in/sec (mm/sec)	13.33 (339)	10.00 (254)	6.67 (169)
	T2X - Ca (${ }_{\text {a }}$ (Dynamic Load Rating)	lbf (N)	5800 (25798)		
0.5	Continuous Force	lbf (N)	141 (627)	$238(1,059)$	317 (1,410)
	Peak Force	lbf (N)	283 (1,259)	$475(2,113)$	$633(2,816)$
	Max Speed	in/sec (mm/sec)	33.33 (847)	25.00 (635)	16.67 (423)
	T2X - Ca (Dynamic Load Rating)	lbf (N)	4900 (21795)		
Drive Current @ Continuous Force		Amps	3.1	3.8	3.6
Available Stroke Lengths		in (mm)	3 (76), 6 (150), 10 (254), 12 (305), 14 (356), 18 (457)		
Inertia (zero stroke)		$\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2} / \mathrm{Kg}-\mathrm{m}^{2}$	0.002655 (0.000003000)	0.002829 (0.000003196)	0.003003 (0.0000033963)
Inertia Adder (per inch of stroke)		$\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2} / \mathrm{in} / \mathrm{Kg}-\mathrm{m}^{2} / \mathrm{in}$	0.0001424 (0.0000001609)		
Approximate Weight		$\mathrm{lb}(\mathrm{kg})$	$10.8(4.9)$ for 3 inch stroke, 1 stack. Add 1.1 (0.5) per inch of stroke. Add 1.1 (0.5) per motor stack. Add .8 (0.4) for brake.		
Operating Temperature Range*			-20C to $65 \mathrm{C}\left(-40^{\circ} \mathrm{C}\right.$ available, consult Exlar)		
Continuous AC Input Current"		Amps	4.3	4	3.6

* Ratings based on $40^{\circ} \mathrm{C}$ conditions. ** Continuous input current rating is defined by UL and CSA *** T2X peak force for 0.1 inch lead is $1980 \mathrm{lbf}(8808 \mathrm{~N})$

T2X090

		Stator	1 Stack	2 Stack	2 Stack
Lead		RPM @ 240 VAC	4000	4000	3000
0.1	Continuous Force	lbf (N)	1,130 (5062)	1,488 (6619)	NA
	Peak Force	lbf (N)	2,260 (10053)	2,700 (12010)***	NA
	Max Speed	in/sec (mm/sec)	6.67 (169)	6.67 (169)	NA
	T2X - Ca (Dynamic Load Rating)	lbf (N)	5516 (24536)		NA
0.2	Continuous Force	lbf (N)	640 (2847)	843 (3750)	1,113 (4951)
	Peak Force	$\mathrm{lbf}(\mathrm{N})$	1,281 (5698)	1,687 (7504)	2,225 (9897)
	Max Speed	in/sec (mm/sec)	13.33 (338)	13.33 (338)	10.00 (254)
	T2X - Ca (Dynamic Load Rating)	lbf (N)	5800 (25798)		
0.5	Continuous Force	lbf (N)	271 (1205)	357 (1588)	471 (2095)
	Peak Force	lbf (N)	542 (2410)	714 (3176)	942 (4190)
	Max Speed	$\mathrm{in} / \mathrm{sec}(\mathrm{mm} / \mathrm{sec})$	33.33 (847)	33.33 (847)	25.00 (635)
	T2X - Ca (Dynamic Load Rating)	lbf (N)	4900 (21795)		
Drive Current @ Continuous Force		Amps	5.7	7.5	7.5
Available Stroke Lengths		in (mm)	3 (75), 6 (150), 10 (254), 12 (300), 18 (450)		
Inertia (zero stroke)		$\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2} / \mathrm{Kg}-\mathrm{m}^{2}$	0.002655 (0.000003000)	0.002829 (0.000003196)	0.003003 (0.0000033963)
Inertia Adder (per inch of stroke)		$\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2} / \mathrm{in} / \mathrm{Kg}-\mathrm{m}^{2} / \mathrm{in}$	0.0001424 (0.0000001609)		
Approximate Weight		$\mathrm{lb}(\mathrm{kg})$	$14(6.35)$ for 3 inch stroke, 1 stack. Add 1 (0.5) per inch of stroke. Add 3 (1.4) per motor stack. Add $3(1.4)$ for brake.		
Operating Temperature Range ${ }^{\text {- }}$			-20 to $65^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{C}\right.$ available, consult Exlar)		
Continuous AC Input Current"		Amps	6.3	6.3	6.3

[^1]T2X115

		Stator	1 Stack	2 Stack	2 Stack
Lead		RPM @ 240 VAC	3000	2000	1500
0.1	Continuous Force	lbf (N)	2,060 (9,163)	3,224 (14,341)	NA
	Peak Force	lbf (N)	4,120 (18,327)	$5,400(24,020)^{* * *}$	NA
	Max Speed	in/sec (mm/sec)	5.00 (127)	3.33 (84)	NA
	T2X - C_{a} (Dynamic Load Rating)	lbf (N)	7900 (35141)		NA
0.2	Continuous Force	lbf (N)	1,177 (5,235)	1,843 (8,198)	2,380 (10,586)
	Peak Force	lbf (N)	2,354 (10,471)	3,685 $(16,392)$	4,760 (21,174)
	Max Speed	in/sec (mm/sec)	10.00 (254)	6.67 (169)	5.00 (127)
	T2X - C_{a} (Dynamic Load Rating)	lbf (N)	8300 (36920)		
0.5	Continuous Force	lbf (N)	$530(2,358)$	$829(3,688)$	1,071 (4,764)
	Peak Force	lbf (N)	1,059 (4711)	1,658 (7,375)	2,142 (9,528)
	Max Speed	in/sec (mm/sec)	25.00 (635)	16.67 (423)	12.50 (317)
	T2X - C_{a} (Dynamic Load Rating)	lbf (N)	7030 (31271)		
0.75	Continuous Force	lbf (N)	353 (1,570)	$553(2,460)$	$714(3,176)$
	Peak Force	lbf (N)	$706(3,140)$	1,106 (4,920)	1,428 (6,352)
	Max Speed	in/sec (mm/sec)	37.5 (953)	25 (635)	17.75 (450)
	T2X - C_{a} (Dynamic Load Rating)	lbf (N)	6335 (28179)		
Drive Current @ Continuous Force		Amps	8.5	8.5	8.5
Available Stroke Lengths		in (mm)	4 (102), 6 (150), 10 (254), 12 (300), 18 (450)		
Inertia (zero stroke)		$\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2} / \mathrm{Kg}-\mathrm{m}^{2}$	0.01132 (0.000012790)	. 01232 (0.00001392)	0.01332 (0.00001505)
Inertia Adder (per inch of stroke)		$\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2} / \mathrm{in} / \mathrm{Kg}-\mathrm{m}^{2} / \mathrm{in}$	0.0005640 (0.0000006372)		
Approximate Weight		$\mathrm{lb}(\mathrm{kg})$	34 (15.5) for 6 inch stroke, 1 stack. Add 2 (1) per inch of stroke. Add 8 (4) per motor stack. Add 4 (2) for brake.		
Operating Temperature Range*			-20 to $65^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{C}\right.$ available, consult Exlar)		
Continuous AC Input Current"		Amps	8.3	8.3	8.3

*Ratings based on $25^{\circ} \mathrm{C}$ conditions. ** Continuous input current rating is defined by UL and CSA. *** T2X peak force for 0.1 inch lead is $5400 \mathrm{lbf}(24020 \mathrm{~N})$

Rear Brake Current Draw

T2X075	0.50 Amps @ 24 VDC
T2X090	0.67 Amps @ 24 VDC
T2X115	0.75 Amps @ 24 VDC

DEFINITIONS:

Continuous Force: The linear force produced by the actuator at continuous motor torque.
Peak Force: The linear force produced by the actuator at peak motor torque.

Max Speed: The maximum rated speed produced by the actuator at rated voltage.
C_{a} (Dynamic Load Rating): A design constant used in calculating the estimated travel life of the roller screw.

Tritex II AC Linear

Estimated Service Life

T2X075 and T2X090 Estimated L_{10} Travel Life

- - T2X075/T2X090-xx01
- T2X075/T2X090-xx02
- - T2X075/T2X090-xx05

T2X115 Estimated L_{10} Travel Life

- - T2X115-xx01
- - T2X115-xx02
- - T2X115-xx05
- - T2X115-xx08

The L_{10} expected life of a roller screw linear actuator is expressed as the linear travel distance that 90% of properly maintained roller screws are expected to meet or exceed. For higher than 90% reliability, the result should be multiplied by the following factors: $95 \% \times 0.62 ; 96 \% \times 0.53 ; 97 \% \times 0.44 ; 98 \% \times 0.33 ; 99 \% \times 0.21$. This is not a guarantee; these charts should be used for estimation purposes only.

The underlying formula that defines this value is: Travel life in millions of inches, where:

$$
\begin{aligned}
& \quad \begin{array}{l}
C_{\mathrm{a}}=\text { Dynamic load rating (lbf) } \\
\mathrm{F}_{\mathrm{cm}}=\text { Cubic mean applied load (lbf) } \\
\ell=\text { Roller screw lead (inches) }
\end{array} \\
& \text { All curves represent properly lubricated and maintained } \\
& \text { actuators. }
\end{aligned}
$$

Speed vs. Force Curves

Temperature Derating

The speed/torque curves are based on $25^{\circ} \mathrm{C}$ ambient conditions. The actuators may be operated at ambient temperatures up to $65^{\circ} \mathrm{C}$. Use the curve (shown right) for continuous torque/force deratings above $25^{\circ} \mathrm{C}$.

Note: T2X075 ratings are at $40^{\circ} \mathrm{C}$.

Tritex II AC Linear

Speed inch $/ \mathrm{sec}(\mathrm{mm} / \mathrm{sec})$

**T2X peak force for 0.1 inch lead is 1980 lbf (8808 N).

	LEAD inch (mm) 0.5 0.2 (12.70) (5.08)		T2X075 (3 Stack)*				\square Peak Continuous
	790 1,870 $(3,514)$ $(8,318)$ 680 1,600 $(3,025)$ $(7,117)$ 565 1,335 $(2,513)$ $(5,938)$ 450 1,070 $(2,002)$ $(4,759)$ 340 800 $(1,512)$ $(3,559)$ 225 535 $(1,000)$ $(2,380)$ 115 265 (512) $(1,179)$ 0						
			120 VAC	208			
							LEAD inch (mm)
			$\begin{gathered} 1.66 \\ (42.2) \end{gathered}$	$\begin{aligned} & 3.33 \\ & (84.6) \end{aligned}$	$\stackrel{5}{(127)}$	$\begin{gathered} 6.66 \\ (169.2) \end{gathered}$	0.2 (5.08)
			$\begin{gathered} 4.16 \\ (105.7) \end{gathered}$	$\begin{gathered} 8.33 \\ (211.6) \end{gathered}$	$\begin{gathered} 12.5 \\ (317.5) \end{gathered}$	$\begin{gathered} 16.66 \\ (423.2) \end{gathered}$	0.5 (12.70)

[^2]
Tritex II AC Linear

Speed inch $/ \mathrm{sec}(\mathrm{mm} / \mathrm{sec})$

Speed inch $/ \mathrm{sec}(\mathrm{mm} / \mathrm{sec})$
**T2X peak force for 0.1 inch lead is $2700 \mathrm{lbf}(12010 \mathrm{~N})$.

*Test data derived using NEMA recommended aluminum heatsink 10 " $\times 10$ " $\times 3 / 8$ " at $25^{\circ} \mathrm{C}$ ambient.

Tritex II AC Linear

Speed inch/sec (mm/sec)

${ }^{* *}$ T2X peak force for 0.1 inch lead is $5400 \mathrm{lbf}(24020 \mathrm{~N})$.

*Test data derived using NEMA recommended aluminum heatsink $12^{\prime \prime} \times 12^{\prime \prime} \times 1 / 2^{\prime \prime}$ at $25^{\circ} \mathrm{C}$ ambient.

Tritex II AC Linear

Options

AR = External Anti-rotate Assembly

This option provides a rod and bushing to restrict the actuator rod from rotating when the load is not held by another method. Shorter actuators have single sided anti-rotation attachments. Longer lengths require attachments on both sides for proper operation. For AR dimensions, see page 56 .

L1, L2, L3 = Adjustable External Travel Switches

This option allows up to 3 external switches to be included. These switches provide travel indication to the controller and are adjustable. See drawing on page 29. Must purchase external anti-rotate with this option.

PB = Protective Bellows

This option provides an accordion style protective bellows to protect the main actuator rod from damage due to abrasives or other contaminants in the environment in which the actuator must survive. The standard material of this bellows is S 2 Neoprene Coated Nylon,

Sewn Construction. This standard bellows is rated for environmental temperatures of -40 to 250 degrees F. Longer strokes may require the main rod of the actuator to be extended beyond standard length. Not available with extended tie rod mounting option. Please contact your local sales representative.

RB = Rear Electric Brake

This option provides an internal holding brake. The brake is spring activated and electrically released.

SR = Splined Main Rod

A ball spline shafting main rod with a ball spline nut that replaces the standard front seal and bushing assembly. This rod restricts rotation without the need for an external mechanism. The rod diameter will be the closest metric equivalent to our standard rod sizes. Since this option is NOT sealed, it is not suitable for environments in which contaminants may enter the actuator.

Note: Adding this option affects the overall length and mounting dimensions.

Dimensions

T2X075 Double Side Mount or Extended Tie Rod Mount

T2X075 Side Trunnion Mount or Rear Clevis Mount

T2X075 Front, Rear, or Front and Rear Flange Mount

DIM	$\begin{gathered} 3 \text { in }(75 \mathrm{~mm}) \\ \text { stroke in }(\mathrm{mm}) \end{gathered}$	$\begin{aligned} & 6 \text { in }(150 \mathrm{~mm}) \\ & \text { stroke in (mm) } \end{aligned}$	10 in (250 mm) stroke in (mm)	$\begin{aligned} & 12 \text { in }(300 \mathrm{~mm}) \\ & \text { stroke in }(\mathrm{mm}) \end{aligned}$	14 in (350 mm) stroke in (mm)	18 in (450 mm) stroke in (mm)
A	11.98 (304.3)	14.45 (367.0)	18.95 (481.3)	20.95 (532.1)	22.95 (582.9)	26.95 (684.5)
B	6.15 (156.2)	8.62 (218.9)	13.12 (333.2)	15.12 (384.0)	17.12 (434.8)	21.12 (536.4)
C	5.38 (136.7)	8.00 (203.2)	10.00 (254.0)	12.00 (304.8)	14.00 (355.6)	18.00 (457.2)
D	13.40 (340.4)	15.87 (403.1)	20.37 (517.4)	22.37 (568.2)	24.37 (619.0)	28.37 (720.6)

[^3]
Tritex II AC Linear

T2X090 Double Side Mount or Extended Tie Rod Mount

T2X090 Side Trunnion Mount or Rear Clevis Mount

T2X090 Front, Rear, or Front and Rear Flange Mount

DIM	$\begin{gathered} 3 \text { in (75 mm) } \\ \text { stroke } \\ \text { in }(\mathrm{mm}) \end{gathered}$	$\begin{gathered} 6 \text { in (150 mm) } \\ \text { stroke } \\ \text { in (mm) } \\ \hline \end{gathered}$	10 in (250 mm) stroke in (mm)	12 in (300 mm) stroke in (mm)	18 in (450 mm) stroke in (mm)
A	11.54 (293.1)	14.01 (355.9)	18.53 (470.7)	20.53 (521.5)	26.53 (673.9)
B	6.15 (156.1)	8.62 (218.9)	13.12 (333.3)	15.12 (384.1)	21.12 (536.4)
C	5.38 (136.7)	8.01 (203.4)	10.00 (254.0)	12.00 (304.8)	18.00 (457.2)
D	13.52 (343.3)	15.99 (406.1)	20.49 (520.4)	22.49 (571.2)	28.49 (723.6)

* Add 1.61 inches to dimensions " A ", " B " and " D " if ordering a brake. Add 1.78 inches to dimensions " A ", " C " and " D " and dimension if ordering a splined \triangle main rod.
**Add 2 in (50.8 mm) to dimension " E " if ordering protective bellows.

Tritex II AC Linear

T2X115 Double Side Mount or Extended Tie Rod Mount

T2X115 Side Trunnion Mount or Rear Clevis Mount

T2X115 Front, Rear, or Front and Rear Flange Mount

DIM	$\begin{array}{r} 4 \text { in (102 mm) } \\ \text { stroke in (mm) } \end{array}$	$\begin{aligned} & 6 \text { in (152 mm) } \\ & \text { stroke in (mm) } \end{aligned}$	10 in (254 mm) stroke in (mm)	$\begin{aligned} & 12 \text { in (} 305 \mathrm{~mm} \text {) } \\ & \text { stroke in }(\mathrm{mm}) \end{aligned}$	18 in (457 mm) stroke in (mm)
A	13.79 (350.3)	15.79 (401.1)	19.79 (502.7)	21.79 (553.5)	27.79 (705.9)
B	8.31 (211.1)	10.31 (261.8)	14.31 (363.5)	16.31 (414.3)	22.31 (566.7)
C	4.00 (101.6)	6.00 (152.4)	10.00 (254.0)	12.00 (304.8)	18.00 (457.2)
D	15.99 (406.1)	17.99 (456.9)	21.99 (558.5)	23.99 (609.3)	29.99 (761.7)

[^4]
Tritex II AC Linear

Anti-Rotate Option

DIM in (mm)	T2X075	T2X090	T2X115
A	$0.82(20.8)$	$0.75(19.1)$	$1.13(28.7)$
B	$2.20(56.0)$	$2.32(58.9)$	$3.06(77.7)$
C	$0.60(15.3)$	$0.70(17.8)$	$1.00(25.4)$
D	$1.32(33.5)$	$1.32(33.5)$	$1.65(41.9)$
E	$2.70(68.7)$	$2.82(71.6)$	$3.63(92.2)$
F	$0.39(9.9)$	$0.38(9.7)$	$0.50(12.7)$
G	$1.70(43.2)$	$1.70(43.2)$	$1.97(50.0)$
ØH	$0.63(16.0)$	$0.63(16.0)$	$0.75(19.1)$

Actuator Rod End Option

Clevis Pin

[^5]
Tritex II AC Linear

Spherical Rod Eye

DIM in (mm)	T2X075	T2X090	T2X115
A	$1.81(46.0)$	$2.125(54.0)$	$2.88(73.2)$
ØB	$0.438(11.13)$	$0.500(12.7)$	$0.75(19.1)$
C	$1.06(26.9)$	$1.156(29.4)$	$1.72(43.7)$
D	$1.13(28.7)$	$1.312(33.3)$	$1.75(44.5)$
E	14 Deg	6 Deg	14 Deg
F	$0.44(11.1)$	$0.500(12.7)$	$0.69(17.5)$
G	$0.56(14.2)$	$0.625(15.9)$	$0.88(22.3)$
H	$0.75(19.1)$	$0.875(22.2)$	$1.13(28.7)$
J	$0.63(16.0)$	$0.750(19.1)$	$1.00(25.4)$
K	$7 / 16-20$	$1 / 2-20$	$3 / 4-16$

Rod Eye

$\begin{aligned} & \text { DIM } \\ & \text { in }(\mathrm{mm}) \end{aligned}$	T2X075	T2X090	T2X115
	RE050	REI050	RE075
$\emptyset A$	0.50 (12.7)	0.50 (12.7)	0.75 (19.05)
B	0.75 (19.1)	0.75 (19.05)	1.25 (31.8)
C	1.50 (38.1)	1.50 (38.1)	2.06 (52.3)
D	0.75 (19.1)	0.75 (19.05)	1.13 (28.7)
E	0.63 (15.9)	0.375 (9.53)	0.88 (22.2)
F	7/16-20	1/2-20	3/4-16

Rod Clevis

DIM in (mm)	T2X075	T2X090	T2X115
A	$0.750(19.05)$	$0.750(19.05)$	$1.125(28.58)$
B	$0.750(19.05)$	$0.750(19.05)$	$1.25(31.75)$
C	$1.500(38.1)$	$1.500(38.1)$	$2.375(60.3)$
D	$0.500(12.7)$	$0.500(12.7)$	$0.625(15.88)$
E	$0.765(19.43)$	$0.765(19.43)$	$1.265(32.12)$
ØF	$0.500(12.7)$	$0.500(12.7)$	$0.75(19.1)$
ØG	$1.000(25.4)$	$1.000(25.4)$	$1.50(38.1)$
H	$1.000(25.4)$	$1.000(25.4)$	$1.25(31.75)$
ØJ	$1.000(25.4)$	N/A	$1.25(31.75)$
K	$7 / 16-20$	$1 / 2-20$	$3 / 4-16$

[^6]
Mechanical Specifications

R2M/G075

Rotary Motor Torque and Speed Ratings				
	Stator	1 Stack	2 Stack	3 Stack
	RPM at 240 VAC	4000	3000	2000
Continuous Torque	lbf-in (Nm)	13 (1.47)	21 (2.37)	28 (3.16)
Peak Torque	lbf-in (Nm)	25 (2.8)	42 (4.75)	56 (6.33)
Drive Current @ Continuous Torque	Amps	3.1	3.8	3.8
Operating Temperature Range*	-20 to $65^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{C}\right.$ available, consult Exlar)			
Continuous AC Input Current"	Amps	4.3	4	3.6

*Ratings based on $40^{\circ} \mathrm{C}$ ambient conditions.
**Continuous input current rating is defined by UL and CSA.
For output torque of R2G gearmotors, multiply by ratio and efficiency. Please note maximum allowable output torques shown below.

Inertia				
	Stator	1 Stack	2 Stack	3 Stack
R2M Motor Armature Inertia $(+/-5 \%)$	Ib-in-sec $\left(\mathrm{kg}-\mathrm{cm}^{2}\right)$	0.000545 (0.6158)	0.000973 (1.0996)	0.001401 (1.5834)
R2G Gearmotor Armature Inertia* $(+/-5 \%)$	Ibf-in-sec $\left(\mathrm{kg}-\mathrm{cm}^{2}\right)$	0.000660 (0.7450)	0.001068 (1.2057)	0.001494 (1.6868)

*Add armature inertia to gearing inertia for total R2G system inertia.

L_{10} Radial Load and	Bearing Life					
RPM	50	100	250	500	1000	3000
R2M075	278	220	162	129	102	71
lbf (N) $^{(1237)}$	(979)	(721)	(574)	(454)	(316)	
R2G075	343	272	200	159	126	88
lbf (N)	(1526)	(1210)	(890)	(707)	(560)	(391)

Side load ratings shown above are for 10,000 hour bearing life at 25 mm from motor face at given rpm.

Gearmotor Mechanical Ratings

		Maximum Allowable Output Torque-Set by User Ibf-in (Nm)			Output Torque at Motor Speed for 10,000 Hour Life		
Model	Ratio	1000 RPM Ibf-in (Nm)	2500 RPM Ibf-in (Nm)	4000 RPM Ibf-in (Nm)			
R2G075-004	$4: 1$	$1618(182.8)$	$384(43.4)$	$292(32.9)$	$254(28.7)$		
R2G075-005	$5: 1$	$1446(163.4)$	$395(44.6)$	$300(33.9)$	$260(29.4)$		
R2G075-010	$10: 1$	$700(79.1)$	$449(50.7)$	$341(38.5)$	$296(33.9)$		

Two torque ratings for the R2G gearmotors are given in the table above. The left hand columns give the maximum (peak) allowable output torque for the indicated ratios of each size R2G gearmotor. This is not the rated output torque of the motor multiplied by the ratio of the reducer.
It is possible to select a configuration of the motor selection and gear ratio such that the rated motor torque, multiplied by the gear ratio exceeds these ratings. It is the responsibility of the user to ensure that the settings of the system do not allow these values to be exceeded.
The right hand columns give the output torque at the indicated speed which will result in 10,000 hour life (L10). The setup of the system will determine the actual output torque and speed.

Gearing Reflected Inertia		
	Single Reduction	
Gear Stages	lbf-in-sec	
$4: 1$	0.000095	$\left({\left.\mathrm{~kg}-\mathrm{cm}^{2}\right)}^{2}\right.$
$5: 1$	0.000062	(0.107)
$10: 1$	0.000017	(0.069)

Backlash and Efficiency		
	Single Reduction	Double Reduction
Backlash at 1\% Rated Torque	10 Arc min	13 Arc min
Efficiency	91%	86%

Motor and Gearmotor Weights				
		R2M075 without Gears	R2G075 with 1 Stage Gearing	Added Weight for Brake
1 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	$7.4(3.4)$	$9.8(4.4)$	
2 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	$9.2(4.2)$	$11.6(5.3)$	$1.0(0.5)$
3 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	$11(4.9)$	$13.4(6.1)$	

Tritex II AC Rotary

R2M/G090

Rotary Motor Torque and Speed Ratings

	Stator	2 Stack	2 Stack	3 Stack
	RPM at 240 VAC	4000	3000	2000
Continuous Torque	Ibf-in (Nm)	$30(3.4)$	$40(4.5)$	$52(5.9)$
Peak Torque	Ibf-in (Nm)	$60(6.8)$	$80(9.0)$	$105(11.9)$
Drive Current @ Continuous Torque	Amps	7.5	7.5	6.6
Operating Temperature Range*		-20 to $65^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{C}\right.$ available, consult Exlar)		
Continuous AC Input Current"	Amps	6.3	6.3	

*Ratings based on $25^{\circ} \mathrm{C}$ ambient conditions.
**Continuous input current rating is defined by UL and CSA.
For output torque of R2G gearmotors, multiply by ratio and efficiency.
Please note maximum allowable output torques shown below.

Inertia			
	Stator	2 Stack	3 Stack
R2M Motor Armature Inertia (+/-5\%)	$\mathrm{lb}-\mathrm{in}-\mathrm{sec}^{2}\left(\mathrm{~kg}-\mathrm{cm}^{2}\right)$	0.00097 (1.09)	0.00140 (1.58)
R2G Gearmotor Armature Inertia* (+/-5\%)	$\mathrm{lbf-in}-\mathrm{sec}^{2}\left(\mathrm{~kg}-\mathrm{cm}^{2}\right)$	0.00157 (1.77)	0.00200 (2.26)

*Add armature inertia to gearing inertia for total inertia.

L_{10} Radial Load and Bearing Lif						
RPM	50	100	250	500	1000	300
$\begin{aligned} & \text { R2MO90 } \\ & \text { bf (N) } \end{aligned}$	$\begin{gathered} 427 \\ (1899) \end{gathered}$	$\begin{gathered} 340 \\ (1512) \end{gathered}$	$\begin{gathered} 250 \\ (1112) \end{gathered}$	$\begin{gathered} 198 \\ (881) \end{gathered}$		
$\underset{\text { lbf }(\mathbb{1})}{\mathrm{R} 2 G 090}$	$\begin{gathered} 350 \\ (1557) \end{gathered}$	$\begin{gathered} 278 \\ (1237) \end{gathered}$	$\begin{gathered} 205 \\ (912) \end{gathered}$	$\begin{gathered} 163 \\ (725) \end{gathered}$	$\begin{gathered} 129 \\ (574) \end{gathered}$	96)

Side load ratings shown above are for 10,000 hour bearing life at 25 mm from motor face at given rpm.

Gearmotor Mechanical Ratings

		Maximum Allowable Output Torque-Set by User Ibf-in (Nm)	Output Torque at Motor Speed for 10,000 Hour Life		
Model	Ratio		1000 RPM Ibf-in (Nm)	2500 RPM Ibf-in (Nm)	4000 RPM lbf-in (Nm)
R2G090-004	4:1	2078 (234.8)	698 (78.9)	530 (59.9)	460 (51.9)
R2G090-005	5:1	1798 (203.1)	896 (101.2)	680 (76.8)	591 (66.8)
R2G090-010	10:1	1126 (127.2)	1043 (117.8)	792 (89.4)	688 (77.7)
R2G090-016	16:1	2078 (234.8)	1057 (119.4)	803 (90.7)	698 (78.9)
R2G090-020	20:1	2078 (234.8)	1131 (127.8)	859 (97.1)	746 (84.3)
R2G090-025	25:1	1798 (203.1)	1452 (164.1)	1103 (124.6)	958 (108.2)
R2G090-040	40:1	2078 (234.8)	1392 (157.3)	1057 (119.4)	918 (103.7)
R2G090-050	50:1	1798 (203.1)	1787 (201.9)	1358 (153.4)	1179 (133.2)
R2G090-100	100:1	1126 (127.2)	1100 (124.3)	1100 (124.3)	1100 (124.3)

Two torque ratings for the R2G gearmotors are given in the table above. The left hand columns give the maximum (peak) allowable output torque for the indicated ratios of each size R2G gearmotor. This is not the rated output torque of the motor multiplied by the ratio of the reducer.
It is possible to select a configuration of the motor selection and gear ratio such that the rated motor torque, multiplied by the gear ratio exceeds these ratings. It is the responsibility of the user to ensure that the settings of the system do not allow these values to be exceeded.
The right hand columns give the output torque at the indicated speed which will result in 10,000 hour life (L10). The setup of the system will determine the actual output torque and speed.

Gearing Reflected Inertia

Single Reduction			Double Reduction		
Gear Stages	lbf-in-sec ${ }^{2}$	$\left(\mathrm{kg}-\mathrm{cm}^{2}\right)$	Gear Stages	lbf-in-sec ${ }^{2}$	($\mathrm{kg}-\mathrm{cm}^{2}$)
4:1	0.000154	(0.174)	16:1	0.000115	(0.130)
5:1	0.000100	(0.113)	20:1, 25:1	0.0000756	(0.0854)
10:1	0.0000265	(0.0300)	40:1, 50:1, 100:1	0.0000203	(0.0230)

Backlash and Efficiency

	Single Reduction	Double Reduction
Backlash at 1\% Rated Torque	10 Arc min	13 Arc min
Efficiency	91%	86%

Motor and Gearmotor Weights

$\left.$| | R2M090 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| without Gears | | | R2G090 with |
| :---: |
| 1 Stage Gearing |\quad| R2G090 with |
| :---: |
| 2 Stage Gearing | | Added Weight |
| :---: |
| for Brake | \right\rvert\,

Tritex II AC Rotary

R2M/G115

Rotary Motor Torque and Speed Ratings				
	Stator	1 Stack	2 Stack	2 Stack
	RPM at 240 VAC	3000	2000	1500
Continuous Torque	lbf-in (Nm)	47 (5.3)	73 (8.3)	95 (10.7)
Peak Torque	lbf-in (Nm)	94 (10.6)	146 (16.5)	190 (21.5)
Drive Current @ Continuous Torque	Amps	8.5	8.5	8.5
Operating Temperature Range*	-20 to $65^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{C}\right.$ available, consult Exlar)			
Continuous AC Input Current"	Amps	8.3	8.3	8.3

*Ratings based on $25^{\circ} \mathrm{C}$ ambient conditions.
${ }^{* *}$ Continuous input current rating is defined by UL and CSA.
For output torque of R2G gearmotors, multiply by ratio and efficiency. Please note maximum allowable output torques shown below.

Inertia			
	Stator	1 Stack	2 Stack
R2M Motor Armature Inertia (+/-5\%)	$\mathrm{lb}-\mathrm{in}-\mathrm{sec}^{2}\left(\mathrm{~kg}-\mathrm{cm}^{2}\right)$	0.00344 (3.89)	0.00623 (7.036)
R2G Gearmotor Armature Inertia*	lbf-in-sec ${ }^{2}\left(\mathrm{~kg}-\mathrm{cm}^{2}\right)$	0.00538 (6.08)	0.00816 (9.22)

L_{10} Radial Load and Bearing Life						
RPM	50	100	250	500	1000	30
$\underset{\text { Rbf (N) }}{\text { R2M115 }}$	$\begin{gathered} 579 \\ (2576) \end{gathered}$	$\begin{gathered} 460 \\ (2046) \end{gathered}$	$\begin{gathered} 339 \\ (1508) \end{gathered}$	$\begin{gathered} 269 \\ (1197) \end{gathered}$	$\begin{gathered} 214 \\ \text { (952) } \end{gathered}$	(658)
$\underset{\text { R2G115 }}{\text { ROf }}$	$\begin{gathered} 858 \\ (3817) \end{gathered}$	(3029)	$\begin{gathered} 502 \\ (2233) \end{gathered}$	(1770)	$\begin{gathered} 316 \\ (1406) \end{gathered}$	$\begin{gathered} 218 \\ (970) \end{gathered}$

Side load ratings shown above are for 10,000 hour bearing life at 25 mm from motor face at given rpm.

Gearmotor Mechanical Ratings					
		Maximum Allowable Output	Output Torque at Motor Speed for 10,000 Hour Life		
Model	Ratio	Torque-Set by User Ibf-in (Nm)	1000 RPM Ibf-in (Nm)	2000 RPM Ibf-in (Nm)	3000 RPM Ibf-in (Nm)
R2G115-004	4:1	4696 (530.4)	1392 (157.3)	1132 (127.9)	1000 (112.9)
R2G115-005	5:1	4066 (459.4)	1455 (163.3)	1175 (132.8)	1040 (117.5)
R2G115-010	10:1	2545 (287.5)	1660 (187.6)	1350 (152.6)	1200 (135.6)
R2G115-016	16:1	4696 (530.4)	2112 (238.6)	1714 (193.0)	1518 (171.0)
R2G115-020	20:1	4696 (530.4)	2240 (253.1)	1840 (207.9)	1620 (183.0)
R2G115-025	25:1	4066 (459.4)	2350 (265.5)	1900 (214.7)	1675 (189.2)
R2G115-040	40:1	4696 (530.4)	2800 (316.4)	2240 (253.1)	2000 (225.9)
R2G115-050	50:1	4066 (459.4)	2900 (327.7)	2350 (265.5)	2100 (237.3)
R2G115-100	100:1	2545 (287.5)	2500 (282.5)	2500 (282.5)	2400 (271.2)

Two torque ratings for the R2G gearmotors are given in the table above. The left hand columns give the maximum (peak) allowable output torque for the indicated ratios of each size R2G gearmotor. This is not the rated output torque of the motor multiplied by the ratio of the reducer.
It is possible to select a configuration of the motor selection and gear ratio such that the rated motor torque, multiplied by the gear ratio exceeds these ratings. It is the responsibility of the user to ensure that the settings of the system do not allow these values to be exceeded.
The right hand columns give the output torque at the indicated speed which will result in 10,000 hour life (L10). The setup of the system will determine the actual output torque and speed.

Gearing Reflected Inertia					
Single Reduction			Double Reduction		
Gear Stages	lbf-in-sec ${ }^{2}$	($\mathrm{kg}-\mathrm{cm}^{2}$)	Gear Stages	lbf-in-sec ${ }^{2}$	($\mathrm{kg}-\mathrm{cm}^{2}$)
4:1	0.000635	(0.717)	16:1	0.000513	(0.580)
5:1	0.000428	(0.484)	20:1, 25:1	0.000350	(0.396)
10:1	0.000111	(0.125)	40:1, 50:1, 100:1	0.0000911	(0.103)

Backlash and Efficiency		
	Single Reduction	Double Reduction
Backlash at 1\% Rated Torque	10 Arc min	13 Arc min
Efficiency	91%	86%

| Motor and RTG115 Gearmotor | Neights | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | R2M115
 without Gears | R2G115 with
 1 Stage Gearing | R2G115 with
 2 Stage Gearing | Added Weight
 for Brake |
| 1 Stack Stator | $\mathrm{lb}(\mathrm{kg})$ | $19(8.6)$ | $34(15.4)$ | $40(18.1)$ | |
| 2 Stack Stator | $\mathrm{lb}(\mathrm{kg})$ | $27(12.2)$ | $42(19.1)$ | $48(21.8)$ | $2.7(1.2)$ |
| 3 Stack Stator | $\mathrm{lb}(\mathrm{kg})$ | $35(15.9)$ | $50(22.7)$ | $56(25.4)$ | |

Speed vs. Torque Curves

For R2G gearmotors, multiply torque by gear ratio and efficiency. Divide speed by gear ratio efficiencies; 1 Stage $=0.91,2$ Stage $=0.86$ *R2M075 test data derived using NEMA recommended aluminum heatsink $10^{\prime \prime} \times 10^{\prime \prime} \times 3 / 8^{\prime \prime}$ at $40^{\circ} \mathrm{C}$ ambient.
**R2M090 test data derived using NEMA recommended aluminum heatsink $10^{\prime \prime} \times 10^{\prime \prime} \times 3 / 8^{\prime \prime}$ at $25^{\circ} \mathrm{C}$ ambient.
${ }^{* * * R 2 M 115 ~ t e s t ~ d a t a ~ d e r i v e d ~ u s i n g ~ N E M A ~ r e c o m m e n d e d ~ a l u m i n u m ~ h e a t s i n k ~} 12^{\prime \prime} \times 12^{\prime \prime} \times 1 / 2^{\prime \prime}$ at $25^{\circ} \mathrm{C}$ ambient.

Tritex II AC Rotary

Dimensions

R2M/G075 Base Actuator

		R2M075	R2G075			R2M075	R2G075
A	in	5.32	5.32	L	in	0.79	0.79
	mm	135.1	135.1		mm	20.0	20.0
B	in	$\square 3.05$	$\square 3.05$	M	in	Ø 0.5512 / 0.5508	Ø 0.6302 / 0.6298
	mm	77.4	77.4		mm	14 h 6	16 j6
C	in	4 X Ø 0.26 ON BC	4X Ø0.26 ON BC	N	in	1.18	1.18
	mm	6.5	6.5		mm	30.0	30.0
D	in	Ø 3.74 BC	Ø 3.74 BC	0	in	See Below	See Below
	mm	95.0	95.0		mm	See Below	See Below
E	in	Ø 2.5587 / 2.5580	Ø 2.5587 / 2.5580	P	in	5.59	5.59
	mm	65 g 6	65 g 6		mm	142.0	142.0
F	in	0.70	0.70	Q	in	1.50	1.50
	mm	17.9	17.9		mm	38.1	38.1
G	in	Ø 0.1969 / 0.1957	Ø 0.1969 / 0.1957	R	in	0.67	0.67
	mm	5 h 9	5 h 9		mm	17.0	17.0
H	in	0.21	0.21	S	in	1.23	1.23
	mm	5.3	5.3		mm	31.3	31.3
I	in	3.05	3.05	T	in	0.75	0.75
	mm	77.4	77.4		mm	19.1	19.1
J	in	0.38	0.45	U	in	0.75	0.75
	mm	9.5	11.5		mm	19.1	19.1
K	in	0.11	0.11	V	in	4.58	4.58
	mm	2.8	2.8		mm	116.4	116.4

R2M075

With Brake Option				Without Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator	DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
0	9.85 (250.2)	10.85 (275.6)	11.85 (301.0)	0	8.57 (217.7)	9.57 (243.1)	10.57 (268.5)

R2G075

Without Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
1 Stage Gearhead	1 Stage Gearhead	1 Stage Gearhead	
0	$10.19(258.8)$	$11.19(284.2)$	$12.19(309.6)$

With Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
1 Stage Gearhead	1 Stage Gearhead	1 Stage Gearhead	
0	$11.42(290.1)$	$12.42(315.5)$	$13.42(340.9)$

[^7]
R2M/G090 Base Actuator

		R2M090	R2G090			R2M090	R2G090
A	in	0.2360 / 0.2348	0.2362 / 0.2350	J	in	$\varnothing 0.7480$ / 0.7475	$\varnothing 0.8665$ / 0.8659
	mm	6 h9	6 h9		mm	19 h6	22 j6
B	in	3.54	3.54	K	in	1.57	1.89
	mm	90	90		mm	40	48
C	in	3.54	3.54	L	in	0.39	0.63
	mm	90	90		mm	10	16
D	in	$\varnothing 3.1492$ / 3.1485	$\varnothing 3.1492$ / 3.1485	M	in	See Below	See Below
	mm	80 g 6	80 g 6		mm	See Below	See Below
E	in	0.85	0.96	N	in	2.15	2.15
	mm	21.5	24.5		mm	55	55
F	in	$4 \mathrm{X} \varnothing 0.28$ ON BC	$4 \mathrm{X} \varnothing 0.257$ ON BC	0	in	6.95	6.95
	mm	7	6.5		mm	177	177
G	in	$\varnothing 3.94$ BC	$\varnothing 3.94$ BC	P	in	1.30	1.30
	mm	100	100		mm	33	33
H	in	0.12	0.118	Q	in	3.74	3.74
	mm	3	3		mm	95	95
I	in	1.38	1.417	R	in	1.25	1.25
	mm	35	36		mm	32	32

R2M090

	Without Brake Option	
DIM	2 Stack Stator	3 Stack Stator
M	$10.25(256.3)$	$11.25(285.8)$

With Brake Option		
DIM	2 Stack Stator	3 Stack Stator
M	$11.6(294.6)$	$12.6(320.0)$

R2G090

	Without Brake Option	
DIM	2 Stack Stator	3 Stack Stator
	1 Stage Gearhead	1 Stage Gearhead
M	$12.36(313.9)$	$13.36(339.3)$
DIM	2 Stack Stator	3 Stack Stator
M	Stage Gearhead	2 Stage Gearhead
13.63 (346.2)	$14.63(371.6)$	

	With Brake Option	
DIM	2 Stack Stator 1 Stage Gearhead	3 Stack Stator Stage Gearhead
M	13.67 (347.2)	$14.67(372.6)$
DIM	2 Stack Stator	3 Stack Stator
M Stage Gearhead	2 Stage Gearhead	
M	$14.94(379.5)$	$15.94(404.9)$

[^8]
Tritex II AC Rotary

R2M/G115 Base Actuator

		R2M115	R2G115			R2M115	R2G115
A	in	0.3150 / 0.3135	0.3937 / 0.3923	J	in	$\varnothing 0.9449$ / 0.9444	Ø 1.2603 / 1.2596
	mm	8 h 9	10 h 9		mm	24 h6	32 j6
B	in	4.53	4.530	K	in	1.97	2.55
	mm	115	115		mm	50	65
C	in	4.53	4.530	L	in	0.45	0.64
	mm	115	115		mm	12	16
D	in	$\varnothing 4.3302$ / 4.3294	$\varnothing 4.3302$ / 4.3294	M	in	See Below	See Below
	mm	110 g 6	110 g 6		mm	See Below	See Below
E	in	1.06	1.380	N	in	2.27	2.27
	mm	27	35		mm	58	58
F	in	$4 \times \varnothing$ 0.34 ON BC	$4 \times \varnothing 0.34$ ON BC	0	in	7.56	7.56
	mm	8.5	8.5		mm	192	192
G	in	$\varnothing 5.12$ BC	$\varnothing 5.12$ BC	P	in	1.30	1.30
	mm	130	130		mm	33	33
H	in	0.16	0.16	Q	in	4.23	4.23
	mm	4	4		mm	108	108
I	in	1.41	1.58	R	in	1.25	1.25
	mm	35.9	40		mm	32	32

R2M115

	Without Brake Option	
DIM	1 Stack Stator	2 Stack Stator
M	$9.87(250.7)$	$11.87(301.5)$

With Brake Option		
DIM	1 Stack Stator	2 Stack Stator
M	$11.60(294.6)$	$13.60(345.4)$

R2G115

	Without Brake Option	
DIM	1 Stack Stator	2 Stack Stator
1 Stage Gearhead	1 Stage Gearhead	
M	$13.88(352.6)$	$15.88(403.4)$
DIM	1 Stack Stator	2 Stack Stator
M Stage Gearhead	2 Stage Gearhead	
M	$15.49(393.4)$	$17.49(444.2)$

	With Brake Option	
DIM	1 Stack Stator	2 Stack Stator
	Stage Gearhead	1 Stage Gearhead
M	$15.43(391.9)$	$17.43(442.7)$
DIM	1 Stack Stator	2 Stack Stator
M Stage Gearhead	2 Stage Gearhead	
M	$17.04(432.8)$	$19.04(483.6)$

[^9]
Tritex II AC Linear Ordering Guide

Return to Table of Contents

Actuator Type T2X = Tritex II Linear Actuator, high mechanical capacity	F = Mounting
	$\mathrm{C}=$ Rear Clevis
	D = Double Side Mount
	$\mathrm{E}=$ Extended Tie Rod
BBB $=$ Actuator Frame Size	F = Front Flange
$075=75 \mathrm{~mm}$	$\mathrm{G}=$ Metric Rear Clevis
$090=90 \mathrm{~mm}$	$\mathrm{K}=$ Metric Double Side Mount
$115=115 \mathrm{~mm}$	M = Metric Extended Tie Rod Q = Metric Side Trunnion
CC = Stroke Length	$\mathrm{R}=$ Rear Flange
$04=4$ inch (102 mm) (T2M/X115 only)	
$06=6$ inch (152 mm)	$\mathrm{G}=$ Rod End
$10=10$ inch (254 mm)	$A=$ Male Metric Thread ${ }^{1}$
$12=12$ inch (305 mm)	$B=$ Female Metric Thread ${ }^{1}$
$14=14$ inch (356 mm)	$\mathrm{F}=$ Female US Standard Thread ${ }^{1}$
$18=18$ inch (457 mm)	M = Male US Standard Thread ${ }^{1}$
DD = Screw Lead (linear travel per screw revolution)	HH = Feedback Type $H D=$ Analog Hall Device
	I E Incremental Encoder, 8192 count resolution
$02=0.2$ inch (5.08 mm)	AF = Absolute Feedback
$05=0.5$ inch (12.7 mm)	
$08=0.75$ inch (19.05 mm) (T2M/X115 only	III-II = Motor Stator, All 8 Pole T2X075 Stator Specifications
$\mathrm{E}=$ Connections	$138-40=1$ Stack, $230 \mathrm{VAC}, 4000 \mathrm{rpm}$
G = Standard Straight Threaded Port with Internal terminals, M20 1.5	$238-30=2$ Stack, $230 \mathrm{VAC}, 3000 \mathrm{rpm}$
	$338-20=3$ Stack, $230 \mathrm{VAC}, 2000 \mathrm{rpm}$
$\mathrm{N}=$ NPT Threaded Port via Adapter with Internal	
Terminals, 1/2" NPT	T2X090 Stator Speecifications
I = Intercontec Style - Exlar std, M16/M23 Style	$138-40=1$ Stack, $230 \mathrm{VAC}, 4000 \mathrm{rpm}$
	$238-40=2$ Stack, 230 VAC, 4000 rpm $238-30=2$ Stack, 230 VAC. $3000 \mathrm{rpm}^{6}$

T2X115 Stator Specifications
138-30 = 1 Stack, 230 VAC, 3000 rpm
$238-20=2$ Stack, 230 VAC, $2000 \mathrm{rpm}^{8}$
$238-15=2$ Stack, 230 VAC, 1500 rpm ${ }^{6,8}$ (N/A with 0.1" lead)

JJJ = Voltage
$230=115-230$ VAC, single phase
KKK = Option Board
SIO = Standard I/O Interconnect
IA4 $=4-20 \mathrm{~mA}$ Analog I/O
EIP = SIO plus Ethernet/IP w/M12 connector
EIN $=$ SIO plus Ethernet/IP without M12 connector ${ }^{7}$
PIO = SIO plus Profinet IO w/M12 connector
PIN = SIO plus Profinet IO without M12 connector ${ }^{7}$
TCP = SIO plus Modbus TCP w/M12 connector
TCN = SIO plus Modbus TCP without M12
connector ${ }^{10}$
MM $=$ Mechanical Options ${ }^{3}$
AR = External Anti-rotate
L1/2/3 = External Limit Switches ${ }^{4}$
RB = Rear Brake
PB = Protective Bellows (N/A with extended tie rod mounting option)
SR = Splined Main Rod ${ }^{5}$

For options or specials not listed above or for extended temperature operation, please contact Exlar

NOTES:

1. Chrome-plated carbon steel. Threads not chrome-plated.
2. 0.75 lead not available above 12 inch stroke.
3. For extended temperature operation consult factory for model number.
4. Limit switch option requires AR option.
5. This option is not sealed and is not suitable for any environment in which contaminants come in contact with actuator and may enter the actuator.
6. N/A with 0.1 inch lead
7. Requires customer supplied Ethernet cable through I/O port for Class 1 Division 2 compliance only.
8. Not available with 4 inch stroke.

Tritex II AC Rotary Ordering Guide

R2M/G = Motor Type

R2M = Tritex II AC Rotary Motor
R2G = Tritex II AC Rotary Gearmotor
AAA = Frame Size
$075=75 \mathrm{~mm}$
$090=90 \mathrm{~mm}$
$115=115 \mathrm{~mm}$
$\mathrm{BBB}=$ Gear Ratio
Blank $=$ R2M
Single Reduction Ratios
$004=4: 1$
$005=5: 1$
$010=10: 1$
Double Reduction Ratios (N / A on 75 mm)
$016=16: 1 \quad 020=20: 1$
$025=25: 1 \quad 040=40: 1$
$050=50: 1 \quad 100=100: 1$
C = Shaft Type
K = Keyed

D = Connections

G = Standard Straight Threaded Port with Internal Terminals, M20 x 1.5
$N=$ NPT Threaded Port with Internal Terminals, $1 / 2^{\prime \prime}$ NPT
$\mathrm{I}=$ Intercontec style - Exlar Standard, M16/M23 Style Connector

E = Coating Options
 G = Exlar Standard

F = Brake Option
S = No Brake, Standard
$\mathrm{B}=$ Electric Brake, 24 VDC
GG = Feedback Type
HD = Analog Hall Device
IE = Incremental Encoder, 8192 Count Resolution AF = Absolute Feedback

HHH-HH = Motor Stators
R2M/G075 Stator Specifications
$138-40=1$ Stack, 230 VAC, 4000 rpm $238-30=2$ Stack, 230 VAC, 3000 rpm $338-20=3$ Stack, 230 VAC, 2000 rpm

R2M/G090 Stator Specifications $238-40=2$ Stack, 230 VAC, 4000 rpm $238-30=2$ Stack, 230 VAC, 3000 rpm 338-20 $=3$ Stack, 230 VAC, 2000 rpm

R2M/G115 Stator Specifications 138-30 $=1$ Stack, 230 VAC, 3000 rpm $238-20=2$ Stack, 230 VAC, 2000 rpm $238-15=2$ Stack, 230 VAC, 1500 rpm

III = Voltage
$230=115-230$ VAC, Single Phase

JJJ = Option Board
SIO = Standard I/O Interconnect
IA4 $=4-20 \mathrm{~mA}$ Analog I / O
EIP = SIO plus Ethernet/IP w/M12 connector
EIN $=$ SIO plus EthernetIIP without M12 connector 1
PIO = SIO plus Profinet IO w/M12 connector
PIN = SIO plus Profinet IO without M12 connector ${ }^{1}$
TCP = SIO plus Modbus TCP w/M12 connector
TCN = SIO plus Modbus TCP without M12 connector ${ }^{1}$

For options or specials not listed above or for extended temperature operation, please contact Exlar

NOTES:

1. Requires customer supplied Ethernet cable through I/O port for Class 1 Division 2 compliance only.
2. For extended temperature operation consult factory for model number.

Tritex II AC Ordering Guide

Cable and Accessories

Tritex II AC Series Cable \& Accessories	Part No.
Communications Accessories - Tritex uses a 4 pin M8 RS485 communications connector	
Recommended PC to Tritex communications cable-USB/RS485 to M8 connector $\mathrm{xxx}=$ Length in feet, 006 or 015 only	CBL-T2USB485-M8-xxx
Multi-Drop RS485 Accessories	
RS485 splitter - M8 Pin plug to double M8 Socket receptacle	TT485SP
Multidrop Communications Cable M8 to M8 for use with TT485SP/RS485 splitter - xxx $=$ Length in feet, 006 or 015 only	CBL-TTDAS-xxx
"G" Connection Accessories	
Nickel plated cable gland- M $20 \times 1.5-\mathrm{CE}$ shielding- 2 required	GLD-T2M20 1.5
Power cable prepared on one end for use with GLD-T2M20 x $1.5 \mathrm{xxx}=$ Length in ft , Standard lengths $015,025,050,075,100$	CBL-T2IPC-RAW-xxx
I/O cable prepared on one end for use with GLD-T2M20 $1.5 \mathrm{xxx}=$ Length in ft , Standard lengths $015,025,050,075,100$	CBL-T2IOC-RAW-xxx
" N " Connection Accessories	
M20 1.5 to 1/2" NPT threaded hole adapter for use with conduit	ADAPT-M20-NPT1/2
"I" Connection	
Power cable with M23 6 pin $\mathrm{xxx}=$ Length in feet, std lengths $015,025,050,075,100$	CBL-T2IPC-SMI-xxx
I/O cable (75 mm) with M23 19 pin $\mathrm{xxx}=$ Length in feet, std lengths $015,025,050$, 075, 100	CBL-TTIOC-SMI-xxx
I/O cable ($90 \& 115 \mathrm{~mm}$) with M16 19 pin $\mathrm{xxx}=$ Length in feet, std lengths 015,025 , 050, 075, 100	CBL-T2IOC-SMI-xxx
Multi-Purpose Communications Accessories for long runs, requires terminal block interconnections	
USB to RS485 convertor/cable - USB to RS485 flying leads - xxx = Length in feet, 006 or 015 only	CBL-T2USB485-xxx
Communications cable M8 to flying leads cable $x x x=$ Length in feet, standard lengths $015,025,050,075,100$	CBL-TTCOM-xxx
Option Board Cables and Accessories	
EIP, PIO and TCP option Ethernet cable - M12 to RJ45 cable xxx = Length in feet, std lengths $015,025,050,075,100$.	CBL-T2ETH-R45-xxx
Electrical Accessories	
Dynamic Braking Resistor - 100W47Ohm	T2BR1
Replacement -AF Battery - used for absolute feedback option	T2BAT1
Replacement Normally Closed External Limit Switch (Turck Part number BIM-UNT-RP6X)	43404
Replacement Normally Open External Limit Switch (Turck Part number BIM-UNT-AP6X)	43403
Mechanical Accessories	
Clevis Pin for T2X090 male "M" rod end 1/2-20 thread	CP050
Clevis Pin for T2X115 male "M" rod end 3/4-16 thread	CP075
Spherical Rod Eye for T2X090 male "M" rod end 1/2-20 thread	SRM050
Spherical Rod Eye for T2X115 male "M" rod end 3/4-16 thread	SRM075
Rod Eye for T2X090 male "M" rod end 1/2-20 thread	REI050
Rod Eye for T2X115 male "M" rod end 3/4-16 thread	RE075
Rod Clevis for T2X090 male "M" rod end 1/2-20 thread	RCIO50
Rod Clevis for T2X115 male "M" rod end 3/4-16 thread	RC075
Jam Nut for T2X090 male rod end, 1/2-20	JAM1/2-20-SS
Jam Nut for T2X115 male rod end, 3/4-16	JAM3/4-16-SS

CBL-T2USB485-M8-xxx
Our recommended communications cable. No special drivers or setup required for use with MS Windows ${ }^{\text {TM }}$.

CBL-T2USB485-xxx Use for terminal connections with CBLTTCOM for long cable runs. No special drivers or setup required for use with MS Windows ${ }^{\text {TM }}$.

CBL-TTIOC-SMI-xxx

CBL-TTIPC-SMI-xxx

CBL-TTCOM-xxx Use with CBL-T2USB485-xxx for long cable runs.

CBL-TTDAS-xxx
For use with TT485SP for multi-drop applications.

TT485SP
RS485 communications splitter. Use to daisychainmultiple Tritex actuators.

Tritex II DC Overview

Tritex II DC

Linear \& Rotary Actuators

No Compromising on Power, Performance or Reliability With forces to approximately $950 \mathrm{lbs}(4 \mathrm{kN})$ continuous and $1,300 \mathrm{lbf}$ peak (6 kN), and speeds to $33 \mathrm{in} / \mathrm{sec}(800 \mathrm{~mm} / \mathrm{sec}$), the DC Tritex II linear actuators also offer a benefit that no other integrated product offers: POWER! No longer are you limited to trivial amounts of force, or speeds so slow that many motion applications are not possible. And the new Tritex II with DC power electronics operates with maximum reliability over a broad range of ambient temperatures: $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$. The DC powered Tritex II actuators contain a 750 W servo amplifier and a very capable motion controller. With standard features such as analog following for position, compound moves, move chaining, and individual force/torque control for each move, the Tritex II Series is the ideal solution for most motion applications.

Tritex II Models

- TDX high mechanical capacity actuator, 60 , and 75 mm
- RDM rotary motor, 60,75 , and 90 mm
- RDG rotary gearmotor, 60,75 , and 90 mm

Power Requirements

- DC Power 12-48 VDC nominal
- Connections for external braking resistor

Feedback Types

- Analog Hall with 1000 count resolution
- Incremental encoder with 8192 count resolution
- Absolute Feedback (analog hall
with multi-turn, battery backup)

Connectivity

- Internal terminals accessible through removable cover (75 and 90 mm models)
- Threaded ports for cable glands (75 and 90 mm models)
- Optional connectors - M23 Power - M23 I/O
- M8 connector for RS485
- M12 connector for EtherNet options
- Custom connection options
- Embedded leads

Technical Characteristics	
Frame Sizes in (mm)	$2.3(60), 2.9(75)$
Screw Leads in (mm)	$0.1(2), 0.2(5), 0.4(10)$, $0.5(13)$
Standard Stroke Lengths in (mm)	$3(76), 6(152), 10(254)$, $12(305), 14(356), 18(457)$
Force Range	up to $872 \mathrm{lbf}(3879 \mathrm{~N})$
Maximum Speed	up to $33.3 \mathrm{in} / \mathrm{s}(846 \mathrm{~mm} / \mathrm{s})$

Operating Conditions and Usage		
Accuracy:		
Screw Lead Error	in/ft $(\mu \mathrm{m} / 300 \mathrm{~mm})$	$0.001(25)$
Screw Travel Variation	in/ft $(\mu \mathrm{m} / 300 \mathrm{~mm})$	$0.0012(30)$
Screw Lead Backlash	in	0.004 (TDX),
Ambient Conditions:		
Standard Ambient Temperature	${ }^{\circ} \mathrm{C}$	0 to 65
Extended Ambient Temperature**	${ }^{\circ} \mathrm{C}$	-40 to 65
Storage Temperature	${ }^{\circ} \mathrm{C}$	-40 to 85
IP Rating		TDX $=$ IP66S RDM/RDG $=$ IP66S
NEMA Ratings		None
Vibration		$5.0 \mathrm{~g} \mathrm{rms}, 5$ to 500 hz

*Ratings at $40^{\circ} \mathrm{C}$, operation over $40^{\circ} \mathrm{C}$ requires de-rating. See page 73.
${ }^{* *}$ Consult Exlar for extended temperature operation.

Tritex II DC Overview

Communications \& I/O

Digital Inputs:
9 to 30 VDC Opto-isolated

Digital Outputs:

30 VDC maximum
100 mA continuous output
Isolated
Short circuit and over temperature protected

Analog Input DC:

$0-10 \mathrm{~V}$ or $+/-10 \mathrm{~V}$
$0-10 \mathrm{~V}$ mode, 12 bit resolution
+/-10V mode, 13 bit resolution assignable to Position, Velocity,
Torque, or Velocity override command

IA4 option:

4-20 mA input
16 bit resolution
Isolated
Assignable to Position, Velocity, Torque, or Velocity Override command

4-20 mA output
12 bit resolution
Assignable to Position, Velocity, Current, Temperature, etc.

Standard Communications:

- 1 RS485 port, Modbus RTU, opto-isolated for programming, controlling and monitoring

Analog Output DC:

0-10V
11 bit resolution

Tritex II DC I/O		
	$\mathbf{6 0 / 7 5 / 9 0} \mathbf{~ m m ~}$ frame with SIO, EIP, PIO, TCP	8
$\mathbf{6 0 / 7 5 / 9 0} \mathbf{~ m m ~}$ frame with IA4		
Isolated digital inputs	4	4
Isolated digital outputs	1	3
Analog input, non isolated	1	0
Analog output, non isolated	0	0
Isolated 4-20ma input	0	1
Isolated 4-20ma output		1

The IO count and type vary with the actuator model and option module selected.

All models include isolated digital IO, and an isolated RS485 communication port when using Modbus RTU protocol.

Product Features

Tritex II DC Overview

Industries and Applications

Hydraulic cylinder replacement Ball screw replacement Pneumatic cylinder replacement

Mobile Equipment

Unmanned Vehicles

Process Control
Oil \& Gas Wellhead Valve Control Pipeline Valve Control Damper Control Knife Valve Control Chemical pumps

Entertainment / Simulation

Ride Motion Bases
Animatronics

Since no fluids and associated equipment (pumps, compressors, filters, accumulators, hose/tubing, oil testing, etc.) are required, electromechanical actuators offer greater energy efficiency, less environmental impact and lower total life-cycle cost.

The Tritex II Series DC actuators integrate a DC powered servo drive, digital position controller, brushless motor, and linear actuator in a compact, sealed package making it perfect for environments where AC power is difficult to achieve.

Mechanical Specifications

 TDX060| | | | Stator | 1 Stack | 2 Stack | 3 Stack |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lead | | | RPM @ 48 VDC | 5000 | 5000 | 4000 |
| 0.1 | | Force | $1 \mathrm{lbf}(\mathrm{N})$ | 339 (1508) | 528 (2349) | N/A |
| | | | lbf (N) | 641 (2851) | 666 (2963) | N/A |
| | Max | 48 VDC | $\mathrm{in} / \mathrm{sec}(\mathrm{mm} / \mathrm{sec})$ | 8.33 (211.6) | 8.33 (211.6) | N/A |
| | TDX - C_{a} (| Load Rating) | lbf (N) | 2075 (9230) | | NA |
| 0.2 | | Force | lbf (N) | 180 (801) | 280 (1246) | 347 (1544) |
| | | | lbf (N) | 340 (1512) | 354 (1575) | 454 (2019) |
| | Max | 48 VDC | in/sec (mm/sec) | 16.67 (423.4) | 16.67 (423.4) | 13.33 (338.6) |
| | TDX-C ${ }_{\text {a }}$ (| Load Rating) | lbf (N) | 1540 (6850) | | |
| 0.4 | | Force | lbf (N) | 95 (423) | 148 (658) | 184 (818) |
| | | | lbf (N) | 180 (801) | 187 (832) | 240 (1068) |
| | Max | 48 VDC | $\mathrm{in} / \mathrm{sec}(\mathrm{mm} / \mathrm{sec})$ | 33.33 (847) | 33.33 (847) | 26.67 (677.4) |
| | TDX-C ${ }_{\text {a }}$ (| Load Rating) | lbf (N) | 1230 (5471) | | |
| Drive Current @ Continuous Force | | | Amps | 14.75 | 21.5 | 21.5 |
| Available Stroke Lengths | | in (mm) | 3 (75), 6 (150), 10 (254), 12 (300) | | | |
| Inertia (zero stroke) | | | $\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2} / \mathrm{Kg}-\mathrm{m}^{2}$ | 0.0007758 (0.0000008766) | 0.0008600 (0.0000009717) | 0.0009442 (0.000001067) |
| Inertia Adder (per unit of stroke) | | | $\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2} / \mathrm{in} / \mathrm{Kg}-\mathrm{m}^{2} / \mathrm{in}$ | 0.00004667 (0.00000005273) | | |
| Approximate Weightlb (kg) | | | $4 \mathrm{lbs}-3$ in stroke, 1 stack, add 1 lb per inch of stroke, add 3 lbs per stack, add 3 lbs for brake. ($1.8 \mathrm{~kg}-75 \mathrm{~mm}$ stroke, 1 stack, add 0.5 kg per 25 mm of stroke, add 1.4 kg per stack, add 1.4 kg for brake.) | | | |
| Operating Temperature Range" | | | -20 to $65^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{C}\right.$ available, consult Exlar) | | | |
| Maximum Continuous Power Supply Current | | | Amps | 11 | 15 | 15 |

[^10]
Tritex II DC Linear

TDX075

			Stator	1 Stack	2 Stack	3 Stack
Lead			RPM @ 48 VDC	3000	3000	2000
0.1		Force	$1 \mathrm{lbf}(\mathrm{N})$	613 (2727)	872 (3879)	NA
			lbf (N)	884 (3932)	1190 (5293)	NA
	Max S	48 VDC	in/sec (mm/sec)	5.00 (127)	5.00 (127)	NA
	TDX - Ca ${ }_{\text {a }}$ (D	Load Rating)	lbf (N)	5516 (24536)		NA
0.2		Force	lbf (N)	347 (1544)	494 (2197)	774 (3443)
			lbf (N)	501 (2229)	674 (2998)	1095 (4871)
	Max	48 VDC	$\mathrm{in} / \mathrm{sec}(\mathrm{mm} / \mathrm{sec})$	10.00 (254)	10.00 (254)	6.67 (169.4)
	TDX-C ${ }_{\text {a }}$ (Load Rating)	lbf (N)	5800 (25798)		
0.5		Force	lbf (N)	147 (654)	209 (930)	328 (1459)
			lbf (N)	212 (943)	286 (1272)	464 (2064)
	Max	48 VDC	in/sec (mm/sec)	25.00 (635)	25.00 (635)	16.67 (423.4)
	TDX - $\mathrm{C}_{\text {a }}$ (Load Rating)	lbf (N)	4900 (21795)		
Drive Current @ Continuous Force			Amps	18.5	22.5	22.5
Available Stroke Lengths		in (mm)	3 (75), 6 (150), 10 (254), 12 (300), 14 (355), 18 (450)			
Inertia (zero stroke)			$\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2} / \mathrm{Kg}-\mathrm{m}^{2}$	0.01132 (0.000012790)	0.01232 (0.00001392)	$0.01332(0.00001505)$
Inertia Adder (per unit of stroke)			$\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2} / \mathrm{in} / \mathrm{Kg}-\mathrm{m}^{2} / \mathrm{in}$	0.0005640 (0.0000006372)		
Approximate Weight $\mathrm{lb}(\mathrm{kg})$			$11 \mathrm{lbs}-3$ in stroke, add 1 lb per inch of stroke, add 3 lbs per stack, add 3 lbs for brake. ($5 \mathrm{~kg}-75 \mathrm{~mm}$ stroke, 1 stack, add 0.5 kg per 25 mm of stroke, add 1.4 kg per stack, add 1.4 kg for brake.)			
Operating Temperature Range"			-20 to $65^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{C}\right.$ available, consult Exlar)			
Maximum Continuous Power Supply Current*			Amps	15	18	18

*Power supply current is based on software current limit, not thermal limit. Consideration for peak current should also be considered when sizing power supplies. **Rating based on $40^{\circ} \mathrm{C}$ ambient conditions.

DEFINITIONS:

Continuous Force: The linear force produced by the actuator at continuous motor torque.
Peak Force: The linear force produced by the actuator at peak motor torque.

Max Speed: The maximum rated speed produced by the actuator at rated voltage.
C_{a} (Dynamic Load Rating): A design constant used in calculating the estimated travel life of the roller screw.

Tritex II DC Linear

Estimated Service Life

TDX060 Estimated L_{10} Travel Life

The L_{10} expected life of a roller screw linear actuator is expressed as the linear travel distance that 90% of properly maintained roller screws are expected to meet or exceed. For higher than 90% reliability, the result should be multiplied by the following factors: $95 \% \times 0.62 ; 96 \% \times 0.53 ; 97 \% \times 0.44 ; 98 \% \times$ $0.33 ; 99 \% \times 0.21$. This is not a guarantee; these charts should be used for estimation purposes only.

The underlying formula that defines this value is:
Travel life in millions of inches, where:
$C_{\mathrm{a}}=$ Dynamic load rating (lbf)
$\mathrm{F}_{\mathrm{cm}}=$ Cubic mean applied load (lbf)
$\ell=$ Roller screw lead (inches)

All curves represent properly lubricated and maintained actuators.

Speed vs. Force Curves

Temperature Derating

The speed/torque curves are based on $40^{\circ} \mathrm{C}$ ambient conditions. The actuators may be operated at ambient temperatures up to $65^{\circ} \mathrm{C}$. Use the curve (shown right) for continuous torque/force deratings above $40^{\circ} \mathrm{C}$.

[^11]

Speed inch/sec ($\mathrm{mm} / \mathrm{sec}$)

Speed inch/sec (mm/sec)
*Test data derived using NEMA recommended aluminum heatsink $10 " \times 10 " \times 3 / 8^{\prime \prime}$ at $40^{\circ} \mathrm{C}$ ambient.

Options

AR = External Anti-rotate Assembly

This option provides a rod and bushing to restrict the actuator rod from rotating when the load is not held by another method. Shorter actuators have single sided anti-rotation attachments. Longer lengths require attachments on both sides for proper operation. For AR dimensions, see page 79 .

L1, L2, L3 = Adjustable External Travel Switches

This option allows up to 3 external switches to be included. These switches provide travel indication to the controller and are adjustable. See drawing on page 29. Must purchase external anti-rotate with this option.

RB = Rear Electric Brake

This option provides an internal holding brake. The brake is spring activated and electrically released.

PB = Protective Bellows

This option provides an accordion style protective bellows to protect the main actuator rod from damage due to abrasives or other contaminants in the environment in which the actuator must survive. The standard material of this bellows is S 2 Neoprene Coated Nylon, Sewn Construction. This standard bellows is rated for environmental temperatures of -40 to 250 degrees F. Longer strokes may require the main rod of the actuator to be extended beyond standard length. Not available with extended tie rod mounting option. Please contact your local sales representative.

SR = Splined Main Rod

A ball spline shafting main rod with a ball spline nut that replaces the standard front seal and bushing assembly. This rod restricts rotation without the need for an external mechanism. The rod diameter will be the closest metric equivalent to our standard rod sizes. Since this option is NOT sealed, it is not suitable for environments in which contaminants may enter the actuator.

Note: Adding this option affects the overall length and mounting dimensions.

Tritex II DC Linear

Dimensions

TDX060 Double Side Mount or Extended Tie Rod Mount

TDX060 Side Trunnion Mount or Rear Clevis Mount

TDX060 Front, Rear, or Front and Rear Flange Mount

*Add 1.75 inches to dimensions " A ", " B " and " D " if ordering a brake. Add .50 inches to dimensions " A ", " C " and " D " and dimension if ordering a splined Δ main rod. **Add 2 inches (50.8 mm) to " E " if ordering protective bellows.
Pre-sale drawings and models are representative and are subject to change. Certified drawings and models are available for a fee. Consult your local Exlar representative for details.

Tritex II DC Linear

TDX075 Double Side Mount or Extended Tie Rod Mount

TDX075 Side Trunnion Mount or Rear Clevis Mount

TDX075 Front, Rear, or Front and Rear Flange Mount

DIM	$\begin{aligned} & 3 \text { inch (} 75 \mathrm{~mm} \text {) } \\ & \text { stroke in (} \mathrm{mm} \text {) } \end{aligned}$	6 inch (150 mm) stroke in (mm)	10 inch (250 mm) stroke in (mm)	12 inch (300 mm) stroke in (mm)	$14 \text { inch (} 350 \mathrm{~mm} \text {) }$ stroke in (mm)	18 inch (450 mm) stroke in (mm)
A	10.98 (278.9)	13.45 (341.6)	17.95 (455.9)	19.95 (506.7)	21.95 (557.5)	25.95 (659.1)
B	6.15 (156.2)	8.62 (218.9)	13.12 (333.2)	15.12 (384.0)	17.12 (434.8)	21.12 (536.4)
C	5.38 (136.7)	8.00 (203.2)	10.00 (254.0)	12.00 (304.8)	14.00 (355.6)	18.00 (457.2)
D	12.40 (315.0)	14.87 (377.7)	19.37 (492.0)	21.37 (542.8)	23.37 (593.6)	27.37 (695.2)

* Add 1.61 inches to dimensions " A ", " B " and " D " if ordering a brake. Add1.2 inches to dimensions " A ", " C " and " D " and dimension if ordering a splined \triangle main rod.
**Add 2 inches (50.8 mm) to "E" if ordering protective bellows.

Tritex II DC Linear

Anti-Rotate Option

Actuator Rod End Option

DIM	TDX060	TDX075
A	0.813 (20.7)	0.750 (19.1)
B	0.375 (9.5)	0.500 (12.7)
ØC	0.500 (12.7)	0.625 (15.9)
D	0.200 (5.1)	0.281 (7.1)
ØE	0.440 (11.2)	0.562 (14.3)
F	0.750 (19.1)	0.750 (19.1)
Male-Inch	$\begin{gathered} 3 / 8-24 \\ \text { UNF-2A } \end{gathered}$	$\begin{aligned} & 7 / 16-20 \\ & \text { UNF-2A } \end{aligned}$
MaleMetric	M8 $\times 1-6 \mathrm{~g}$	M12 $\times 1.75-69^{\circ}$
FemaleInch	$\begin{aligned} & 5 / 16-24 \\ & \text { UNF-2B } \end{aligned}$	$\begin{aligned} & 7 / 16-20 \\ & \text { UNF-2B } \end{aligned}$
FemaleMetric	M8x 1-6h	M10 x 1.5-6h

*When ordering the male M12x1.75 main rod for the TDM/X075 dimension " A " will be 1.57 in (40 mm)

Clevis Pin

	TDX060	TDX075
DIM	CP050 in (mm) Rear Clevis, RE050 \& RC050	CP075 in (mm) Rear Clevis
A	$2.28(57.9)$	$3.09(78.5)$
B	$1.94(49.28)$	$2.72(69.1)$
C	$0.17(4.32)$	$1.19(4.82)$
ØD	$0.50(12.7)$	$0.75(19.1)$
ØE	$0.001 /-0.002$	$-0.001 /-0.002$
	$0.41)$	$0.14(3.56)$

Spherical Rod Eye

	TDX060	TDX075
DIM	SRM038 in (mm)	SRM044 in (mm)
A	$1.625(41.3)$	$1.81(46.0)$
ØB	$0.375(9.525)$	$0.438(11.13)$
C	$0.906(23.0)$	$1.06(26.9)$
D	$1.0(25.6)$	$1.13(28.7)$
E	12 Deg	14 Deg
F	$0.406(10.3)$	$0.44(11.1)$
G	$0.500(12.7)$	$0.56(14.2)$
H	$0.688(17.7)$	$0.75(19.1)$
J	$0.562(14.3)$	$0.63(16.0)$
K	$3 / 8-24$	$7 / 16-20$

Rod Eye

	TDX060	TDX075
DIM	RE038 in (mm)	RE050 in (mm)
ØA	$0.50(12.7)$	$0.50(12.7)$
B	$0.560(14.2)$	$0.75(19.1)$
C	$1.000(25.4)$	$1.50(38.1)$
D	$0.500(12.7)$	$0.75(19.1)$
E	$0.25 \times 45(6.35)$	$0.63(15.9)$
F	$3 / 8-24$	$7 / 16-20$

Rod Clevis

	TDX060	TDX075
DIM	RC038 in (mm)	RC050 in (mm)
A	$0.787(20)$	$0.75(19.1)$
B	$0.787(20)$	$0.75(19.1)$
C	$1.574(40)$	$1.50(38.1)$
D	$0.183(4.65)$	$0.50(12.7)$
E	$0.375(9.5)$	$0.765(19.43)$
ØF	$0.375(9.5)$	$0.50(12.7)$
ØG	$0.75(19.1)$	$1.00(25.4)$
H	N/A	$1.00(25.4)$
ØJ	N/A	$1.00(25.4)$
K	$3 / 8-24$	$7 / 16-20$

[^12]
Tritex II DC Rotary

Mechanical Specifications

RDM/G060

Rotary Motor Torque and Speed Ratings				
	Stator	1 Stack	2 Stack	3 Stack
	RPM at 48 VDC	5000	5000	4000
Continuous Torque	Ibf-in (Nm)	6.8 (0.76)	10.5 (1.18)	13 (1.47)
Peak Torque	Ibf-in (Nm)	12.8 (1.44)	13.3 (1.5)	17 (1.92)
Drive Current @ Continuous Torque	Amps	14.8	21.5	21.5
Operating Temperature Range*	-20 to $65^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{C}\right.$ available, consult Exlar)			
Maximum Continuous Power Supply Current	Amps	8	11	13

*Power supply current is based on software current limit, not thermal limit. Consideration for peak current should also be considered when sizing power supplies. For output torque of RDG gearmotors, multiply by ratio and efficiency. Please note maximum allowable output torques found at bottom of page.
**Ratings based on $40^{\circ} \mathrm{C}$ ambient conditions.

Inertia					L_{10} Radial Load and Bearing Life						
	Stator	1 Stack	2 Stack	3 Stack	RPM	50	100	250	500	1000	3000
RDM Motor Armature Inertia (+/-5\%)	$\begin{gathered} \mathrm{lb}-\mathrm{in}-\mathrm{sec}^{2} \\ \left(\mathrm{~kg}-\mathrm{cm}^{2}\right) \end{gathered}$	$\begin{gathered} 0.000237 \\ (0.268) \end{gathered}$	$\begin{gathered} 0.000413 \\ (0.466) \end{gathered}$	$\begin{gathered} 0.000589 \\ (0.665) \end{gathered}$	$\underset{\operatorname{lbf}(\mathbb{N})}{\text { RDM060 }}$	$\begin{gathered} 250 \\ (1112) \end{gathered}$	$\begin{gathered} 198 \\ (881) \end{gathered}$	$\begin{gathered} 148 \\ (658) \end{gathered}$	$\begin{gathered} 116 \\ (516) \end{gathered}$	$\begin{gathered} 92 \\ (409) \end{gathered}$	$\begin{gathered} 64 \\ (285) \end{gathered}$
RDG Gearmotor Armature Inertia*	$\begin{aligned} & \text { Ibf-in-sec² } \\ & \left(\mathrm{kg}-\mathrm{cm}^{2}\right) \end{aligned}$	$\begin{gathered} 0.000226 \\ (0.255) \end{gathered}$	$\begin{aligned} & 0.000401 \\ & (0.453) \end{aligned}$	$\begin{gathered} 0.000576 \\ (0.651) \end{gathered}$	$\underset{\text { RDG(} \mathrm{R} \text {) }}{\text { RDG00 }}$	$\begin{gathered} 189 \\ (841) \end{gathered}$	$\begin{gathered} 150 \\ (667) \end{gathered}$	$\begin{gathered} 110 \\ (489) \end{gathered}$	$\begin{gathered} 88 \\ (391) \end{gathered}$	$\begin{gathered} 70 \\ (311) \end{gathered}$	$\begin{gathered} 48 \\ (214) \end{gathered}$

*Add armature inertia to gearing inertia for total inertia.
Side load ratings shown above are for 10,000 hour bearing life at 25 mm from motor face at given rpm.

Gearmotor Mechanical Ratings

		Maximum Allowable Output Torque-Set by User Ibf-in (Nm)		Output Torque at Motor Speed for 10,000 Hour Life		
Model	Ratio	RPM lbf-in (Nm)	3000 RPM Ibf-in (Nm)	5000 RPM Ibf-in (Nm)		
RDG060-004	$4: 1$	$603(68.1)$	$144(16.2)$	$104(11.7)$	$88(9.9)$	
RDG060-005	$5: 1$	$522(58.9)$	$170(19.2)$	$125(14.1)$	$105(11.9)$	
RDG060-010	$10: 1$	$327(36.9)$	$200(22.6)$	$140(15.8)$	$120(13.6)$	
RDG060-016	$16: 1$	$603(68.1)$	$224(25.3)$	$160(18.1)$	$136(15.4)$	
RDG060-020	$20: 1$	$603(68.1)$	$240(27.1)$	$170(19.2)$	$146(16.5)$	
RDG060-025	$25: 1$	$522(58.9)$	$275(31.1)$	$200(22.6)$	$180(20.3)$	
RDG060-040	$40: 1$	$603(68.1)$	$288(32.5)$	$208(23.5)$	$180(20.3)$	
RDG060-050	$50: 1$	$522(58.9)$	$340(38.4)$	$245(27.7)$	$210(23.7)$	
RDG060-100	$100: 1$	$327(36.9)$	$320(36.1)$	$280(31.6)$	$240(27.1)$	

Two torque ratings for the RDG gearmotors are given in the table above. The left hand columns give the maximum (peak) allowable output torque for the indicated ratios of each size RDG gearmotor. This is not the rated output torque of the motor multiplied by the ratio of the reducer.
It is possible to select a configuration of the motor selection and gear ratio such that the rated motor torque, multiplied by the gear ratio exceeds these ratings. It is the responsibility of the user to ensure that the settings of the system do not allow these values to be exceeded.
The right hand columns give the output torque at the indicated speed which will result in 10,000 hour life (L10). The setup of the system will determine the actual output torque and speed.

Gearing Reflected Inertia						Backlash and Efficiency		
Single Reduction			Double Reduction				Single	Double
Gear Stages	lbf-in-sec ${ }^{2}$	(kg-cm²)	Gear Stages	lbf-in-sec ${ }^{2}$	$\left(\mathrm{kg}-\mathrm{cm}^{2}\right)$		Reduction	Reduction
4:1	0.0000132	(0.149)	16:1	0.0000121	(0.0137)	Backlash at 1\% Rated Torque	10 Arc min	13 Arc min
5:1	0.0000087	(0.00984)	20:1, 25:1	0.0000080	(0.00906)	Efficiency	91\%	86\%
10:1	0.0000023	(0.00261)	40:1, 50:1, 100:1	0.0000021	(0.00242)		91\%	86\%

Motor and Gearmotor Weights

		RDM060 without Gears	RDG060 with 1 Stage Gearing	RDG060 with 2 Stage Gearing	Added Weight for Brake
1 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	$3.0(1.4)$	$7.5(3.4)$	$9.3(4.2)$	
2 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	$4.1(1.9)$	$8.6(3.9)$	$10.4(4.7)$	$0.6(0.3)$
3 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	$5.2(2.4)$	$9.7(4.4)$	$11.5(5.2)$	

RDM/G075

Rotary Motor Torque and Speed Ratings				
	Stator	1 Stack	2 Stack	3 Stack
	RPM at 48 VDC	4000	3000	2000
Continuous Torque	lbf-in (Nm)	13 (1.46)	18.5 (2.09)	29 (3.28)
Peak Torque	lbf-in (Nm)	18.9 (2.08)	28 (3.16)	41 (4.63)
Drive Current @ Continuous Torque	Amps	22	22	22
Operating Temperature Range"	-20 to $65^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{C}\right.$ available, consult Exlar)			
Maximum Continuous Power Supply Current	Amps	15	18	18

*Power supply current is based on software current limit, not thermal limit. Consideration for peak current should also be considered when sizing power supplies. For output torque of RDG gearmotors, multiply by ratio and efficiency. Please note maximum allowable output torques shown below.
**Ratings based on $40^{\circ} \mathrm{C}$ ambient conditions.

Inertia				
	Stator	1 Stack	2 Stack	3 Stack
RDM Motor Armature Inertia $(+/-5 \%)$	$\begin{gathered} \mathrm{lb}-\mathrm{in}-\mathrm{sec}^{2} \\ \left(\mathrm{~kg}-\mathrm{cm}^{2}\right) \end{gathered}$	$\begin{aligned} & 0.000545 \\ & (0.6158) \end{aligned}$	$\begin{gathered} 0.000973 \\ (1.0996) \end{gathered}$	$\begin{aligned} & 0.001401 \\ & (1.5834) \end{aligned}$
RDG Gearmotor Armature Inertia (+ /-5\%)	lbf-in-sec ${ }^{2}$ ($\mathrm{kg}-\mathrm{cm}^{2}$)	$\begin{aligned} & 0.000660 \\ & (0.7450) \end{aligned}$	$\begin{gathered} 0.001068 \\ (1.2057) \end{gathered}$	$\begin{gathered} 0.001494 \\ (1.6868) \end{gathered}$

L_{10} Radial Load and Bearing Life						
RPM	50	100	250	500	1000	3000
RDM075	278	220	162	129	102	71
$\operatorname{lbf}(\mathrm{~N})$						

Side load ratings shown above are for 10,000 hour bearing life at 25 mm from motor face at given rpm.

Gearmotor Mechanical Ratings

		Maximum Allowable Output Torque-Set by User Ibf-in (Nm)	Output Torque at Motor Speed for 10,000 Hour Life		
Model	Ratio		1000 RPM Ibf-in (Nm)	2500 RPM Ibf-in (Nm)	4000 RPM Ibf-in (Nm)
RDG075-004	4:1	1618 (182.8)	384 (43.4)	292 (32.9)	254 (28.7)
RDG075-005	5:1	1446 (163.4)	395 (44.6)	300 (33.9)	260 (29.4)
RDG075-010	10:1	700 (79.1)	449 (50.7)	341 (38.5)	296 (33.4)

Two torque ratings for the RDG gearmotors are given in the table above. The left hand columns give the maximum (peak) allowable output torque for the indicated ratios of each size RDG gearmotor. This is not the rated output torque of the motor multiplied by the ratio of the reducer.
It is possible to select a configuration of the motor selection and gear ratio such that the rated motor torque, multiplied by the gear ratio exceeds these ratings. It is the responsibility of the user to ensure that the settings of the system do not allow these values to be exceeded.
The right hand columns give the output torque at the indicated speed which will result in 10,000 hour life (L10). The setup of the system will determine the actual output torque and speed.

Gearing Reflected Inertia		
Single Reduction $(+/-5 \%)$		
Gear Stages	lbf-in-sec 2	
$4: 1$	0.000095	$\left(\mathrm{~kg}-\mathrm{cm}^{2}\right)$
$5: 1$	0.000062	(0.107)
$10: 1$	0.000117	(0.069)

Backlash and Efficiency

	Single Reduction
Backlash at 1\% Rated Torque	10 Arc min
Efficiency	91%

Motor and Gearmotor Weights				
		RDM075 without Gears	RDG075 with 1 Stage Gearing	Added Weight for Brake
1 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	$7.4(3.4)$	$9.8(4.4)$	
2 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	$9.2(4.2)$	$11.6(5.3)$	$1.0(0.5)$
3 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	$11(4.9)$	$13.4(6.1)$	

Tritex II DC Rotary

RDM/G090

Rotary Motor Torque	d Ratin			
	Stator	1 Stack	2 Stack	3 Stack
	RPM at 48 VDC	3300	1800	1400
Continuous Torque	lbf-in (Nm)	17 (1.92)	28 (3.16)	41 (4.63)
Peak Torque	lbf-in (Nm)	21.8 (2.46)	36 (4.07)	52.8 (5.97)
Drive Current @ Continuous Torque	Amps	22	22	22
Operating Temperature Range"	-20 to $65^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{C}\right.$ available, consult Exlar)			
Maximum Continuous Power Supply Current	Amps	18	18	18

*Power supply current is based on software current limit, not thermal limit. Consideration for peak current should also be considered when sizing power supplies.
For output torque of RDG gearmotors, multiply by ratio and efficiency. Please note maximum allowable output torques shown below.
**Ratings based on $40^{\circ} \mathrm{C}$ ambient conditions.

Inertia				
	Stator	1 Stack	2 Stack	3 Stack
RDM Motor Armature Inertia (+/-5\%)	$\begin{aligned} & \mathrm{lb}-\mathrm{in}-\mathrm{sec}^{2} \\ & \left(\mathrm{~kg}-\mathrm{cm}^{2}\right) \end{aligned}$	$\begin{aligned} & 0.00054 \\ & (0.609) \end{aligned}$	$\begin{gathered} 0.00097 \\ (1.09) \end{gathered}$	$\begin{gathered} 0.00140 \\ (1.58) \end{gathered}$
RDG Gearmotor Armature Inertia* (+/-5\%)	$\begin{aligned} & \text { Ibf-in-sec² } \\ & \left(\mathrm{kg}-\mathrm{cm}^{2}\right) \end{aligned}$	$\begin{gathered} 0.00114 \\ (1.29) \end{gathered}$	$\begin{gathered} 0.00157 \\ (1.77) \end{gathered}$	$\begin{gathered} 0.00200 \\ (2.26) \end{gathered}$

*Add armature inertia to gearing inertia for total inertia.

L_{10} Radial Load and Bearing Life						
RPM	50	100	250	500	1000	3000
RDM090	427	340	250	198	158	109
lbf (N)	(1899)	(1512)	(1112)	(881)	(703)	(485)
RDG090 lbf (N)	350 (1557)	278	205	163	129	89
(1237)	(912)	(725)	(574)	(396)		

Side load ratings shown above are for 10,000 hour bearing life at 25 mm from motor face at given rpm.

Gearmotor Mechanical Ratings

		Maximum Allowable Output Torque-Set by User Ibf-in (Nm)	Output Torque at Motor Speed for 10,000 Hour Life		
Model	Ratio		1000 RPM Ibf-in (Nm)	2500 RPM Ibf-in (Nm)	3300 RPM Ibf-in (Nm)
RDG090-004	4:1	2078 (234.8)	698 (78.9)	530 (59.9)	488 (55.1)
RDG090-005	5:1	1798 (203.1)	896 (101.2)	680 (76.8)	626 (70.7)
RDG090-010	10:1	1126 (127.2)	1043 (117.8)	792 (89.5)	729 (82.4)
RDG090-016	16:1	2078 (234.8)	1057 (119.4)	803 (90.7)	739 (83.5)
RDG090-020	20:1	2078 (234.8)	1131 (127.8)	859 (97.1)	790 (89.3)
RDG090-025	25:1	1798 (203.1)	1452 (164.1)	1103 (124.6)	1015 (114.7)
RDG090-040	40:1	2078 (234.8)	1392 (157.3)	1057 (119.4)	973 (109.9)
RDG090-050	50:1	1798 (203.1)	1787 (201.9)	1358 (153.4)	1249 (141.1)
RDG090-100	100:1	1126 (127.2)	1100 (124.3)	1100 (124.3)	1100 (124.3)

Two torque ratings for the RDG gearmotors are given in the table above. The left hand columns give the maximum (peak) allowable output torque for the indicated ratios of each size RDG gearmotor. This is not the rated output torque of the motor multiplied by the ratio of the reducer.
It is possible to select a configuration of the motor selection and gear ratio such that the rated motor torque, multiplied by the gear ratio exceeds these ratings. It is the responsibility of the user to ensure that the settings of the system do not allow these values to be exceeded.
The right hand columns give the output torque at the indicated speed which will result in 10,000 hour life (L10). The setup of the system will determine the actual output torque and speed.

Gearing Reflected Inertia					
Single Reduction			Double Reduction		
Gear Stages	lbf-in-sec ${ }^{2}$	$\left(\mathrm{kg}-\mathrm{cm}^{2}\right)$	Gear Stages	lbf-in-sec ${ }^{2}$	$\left(\mathrm{kg}-\mathrm{cm}^{2}\right)$
4:1	0.0000154	(0.174)	16:1	0.000115	(0.130)
5:1	0.0000100	(0.113)	20:1, 25:1	0.0000756	(0.0854)
10:1	0.0000265	(0.0300)	40:1, 50:1, 100:1	0.0000203	(0.0230)

Backlash and Efficiency		
	Single Reduction	Double Reduction
Backlash at 1\% Rated Torque	10 Arc min	13 Arc min
Efficiency	91%	86%

Motor and Gearmotor Weights

Motor and Gearmotor Weights						
		RDM090 without Gears	RDG090 with 1 Stage Gearing	RDG090 with 2 Stage Gearing	Added Weight for Brake	
1 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	$12.5(5.7)$	$20.5(9.3)$	$23.5(10.7)$		
2 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	$15.5(7.0)$	$23.5(10.7)$	$26.5(12)$	$1.5(0.7)$	
3 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	$18.5(8.4)$	$26.5(12.0)$	$29.5(13.4)$		

Speed vs. Torque Curves

For RDG gearmotors, multiply torque by ratio and efficiency. Divide speed by gear ratio.

* RDM060 test data derived using NEMA recommended aluminum heatsink $10^{\prime \prime} \times 10^{\prime \prime} \times 1 / 4^{\prime \prime}$ at $40^{\circ} \mathrm{C}$ ambient
${ }^{* *}$ RDM075 and RDM090 test data derived using NEMA recommended aluminum heatsink $10^{\prime \prime} \times 10^{\prime \prime} \times 3 / 8$ " at $40^{\circ} \mathrm{C}$ ambient

Tritex II DC Rotary

Dimensions

RDM/G060 Base Actuator

		RDM060	RDG060			RDM060	RDG060
A	in	2.36	2.36	I	in	0.10	0.12
	mm	60	60		mm	2.5	3.0
B	in	2.36	2.36	J	in	0.79	0.98
	mm	60	60		mm	20.0	25.0
C	in	$4 \mathrm{X} \varnothing 0.22$	$4 \mathrm{X} \varnothing 0.22$	K	in	$\varnothing 0.5512$ / 0.5507	$\varnothing 0.6302$ / 0.6298
	mm	5.6	5.6		mm	14 h 6	16 j6
D	in	Ø 2.75 BC	Ø 2.75 BC	L	in	1.18	1.43
	mm	70.0	70.0		mm	30.0	36.3
E	in	Ø 1.9681 / 1.9675	Ø 1.9681 / 1.9675	M	in	See Below	See Below
	mm	50 g 6	50 g 6		mm	See Below	See Below
F	in	0.63	0.70	N	in	1.18	1.18
	mm	15.9	17.9		mm	30.0	30.0
G	in	$\varnothing 0.1969$ / 0.1957	$\varnothing 0.1969$ / 0.1957	0	in	4.53	4.53
	mm	5 h 9	5 h 9		mm	115.1	115.1
H	in	0.34	0.38	P	in	1.63	1.63
	mm	8.7	9.7		mm	41.4	41.4

RDM060

Without Brake Option				With Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator	DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
M	7.146 (185.1)	8.396 (213.3)	9.646 (245.0)	M	7.856 (199.5)	9.106 (231.3)	10.356 (263.0)

RDG060

Without Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
1 Stage Gearhead	1 Stage Gearhead	1 Stage Gearhead	
M	9.434 (240)	10.684 (271)	11.934 (303)
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
2 Stage Gearhead	2 Stage Gearhead	2 Stage Gearhead	
M	$10.479(266)$	$11.729(298)$	$12.979(330)$

With Brake Option			
DIM	1 Stack Stator 1 Stage Gearhead	2 Stack Stator 1 Stage Gearhead	3 Stack Stator 1 Stage Gearhead
M	10.144 (258)	11.394 (289)	12.644 (321)
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
2 Stage Gearhead	2 Stage Gearhead	2 Stage Gearhead	
M	11.189 (284)	$12.439(316)$	$13.689(348)$

[^13]
Tritex II DC Rotary

RDM/G075 Base Actuator

		RDM075	RDG075			RDM075	RDG075
A	in	3.05	3.05	K	in	ø 0.5512 / 0.5508	$\varnothing 0.6302$ / 0.6298
	mm	77.4	77.4		mm	14 h 6	16 j6
B	in	$\varnothing 0.1969$ / 0.1957	$\varnothing 0.1969$ / 0.1957	L	in	1.18	1.18
	mm	5 h 9	5 h 9		mm	30.0	30.0
C	in	$\square 3.05$	$\square 3.05$	M	in	See Below	See Below
	mm	77.4	77.4		mm	See Below	See Below
D	in	$4 \mathrm{X} \varnothing 0.26$ ON BC	$4 \mathrm{X} \varnothing 0.26$ ON BC	N	in	4.59	4.59
	mm	6.5	6.5		mm	116.6	116.6
E	in	$\varnothing 3.74$ BC	$\varnothing 3.74$ BC	0	in	1.5	1.5
	mm	95.0	95.0		mm	38.1	38.1
F	in	$\varnothing 2.5587$ / 2.5580	ø 2.5587 / 2.5580	P	in	5.30	5.30
	mm	65 g 6	65 g 6		mm	134.5	134.5
G	in	0.63	0.70	Q	in	1.06	1.06
	mm	15.9	17.9		mm	27.0	27.0
H	in	0.38	0.45	R	in	4.61	4.61
	mm	9.5	11.5		mm	117.0	117.0
I	in	0.11	0.11	S	in	0.75	0.75
	mm	2.8	2.8		mm	19.1	19.1
J	in	0.79	0.79	T	in	0.75	0.75
	mm	20.0	20.0		mm	19.1	19.1

RDM075

Without Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
M	$7.57(192.3)$	$8.57(217.7)$	$9.57(243.1)$

With Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
M	$8.85(224.8)$	$9.85(250.2)$	$10.85(275.6)$

RDG075

Without Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
1 Stage Gearhead	1 Stage Gearhead	1 Stage Gearhead	
M	$9.19(233.4)$	$10.19(258.8)$	$11.19(284.2)$

With Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
1 Stage Gearhead	1 Stage Gearhead	1 Stage Gearhead	
M	$10.42(264.7)$	$11.42(290.1)$	$12.42(315.5)$

[^14]
Tritex II DC Rotary

RDM/G090 Base Actuator

		RDM90	RDG090			RDM090	RDG090
A	in	3.54	3.54	L	in	1.57	1.89
	mm	90	90		mm	39.6	48.0
B	in	3.54	3.54	M	in	See Below	See Below
	mm	90	90		mm	See Below	See Below
C	in	$4 \times \varnothing 0.28$	4X Ø0.26	N	in	1.77	1.77
	mm	7.0	6.5		mm	45.0	45.0
D	in	\varnothing 3.94 BC	$\varnothing 3.94$ BC	0	in	5.30	5.30
	mm	100.0	100.0		mm	134.5	134.5
E	in	$\emptyset 3.1492$ / 3.1485	$\varnothing 3.1492$ / 3.1485	P	in	3.87	3.87
	mm	80 g 6	80 g 6		mm	98.3	98.3
F	in	0.85	0.96	Q	in	1.06	1.06
	mm	21.5	24.3		mm	27.0	27.0
G	in	$\varnothing 0.2362$ / 0.2350	$\varnothing 0.2362$ / 0.2350	R	in	3.05	3.05
	mm	6 h9	6 h9		mm	77.4	77.4
H	in	0.39	0.63	S	in	0.75	0.75
	mm	10.0	15.9		mm	19.1	19.1
I	in	0.12	0.12	T	in	0.75	0.75
	mm	3.0	3.0		mm	19.1	19.1
J	in	1.26	1.42	\mathbf{U}	in	4.58	4.58
	mm	32.0	36.0		mm	116.4	116.4
K	in	$\emptyset 0.7480$ / 0.7475	$\varnothing 0.8665$ / 0.8659				
	mm	19 h6	22 j6				

RDM090

Without Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
M	$7.69(195.3)$	$8.69(220.7)$	$9.69(246.1)$

With Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
M	$9.0(228.6)$	$10.00(254.0)$	$11.00(279.4)$

RDG090

Without Brake Option			
DIM	1 Stack Stator 1 Stage Gearhead	2 Stack Stator Stage Gearhead	3 Stack Stator
1 Stage Gearhead			
M	$10.80(274.3)$	$11.80(299.7)$	$12.80(325.1)$
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
M Stage Gearhead	2 Stage Gearhead	2 Stage Gearhead	
12.06 (306.3)	$13.06(331.7)$	14.06 (357.1)	

With Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
1 Stage Gearhead	1 Stage Gearhead	1 Stage Gearhead	
M	$12.13(308.1)$	$13.11(333.0)$	$14.11(358.4)$
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
M Stage Gearhead	2 Stage Gearhead	2 Stage Gearhead	
M	$13.37(339.6)$	$14.37(365.0)$	$15.37(390.4)$

[^15]
Tritex II DC Linear Ordering Guide

Actuator Type

TDX = Tritex II Linear Actuator, high mechanical capacity

BBB = Actuator Frame Size
$060=60 \mathrm{~mm}$
$075=75 \mathrm{~mm}$
CC = Stroke Length
$03=3$ inch (76 mm)
$06=6$ inch (152 mm)
$10=10$ inch (254 mm)
$12=12$ inch (305 mm)
$18=18$ inch (457 mm) (75 mm only)
DD = Screw Lead (linear travel per screw revolution)
$01=0.1$ inch $(2.54 \mathrm{~mm})$
$02=0.2$ inch $(5.08 \mathrm{~mm})$
$04=0.4$ inch (10.16 mm) (60 mm only)
$05=0.5$ inch (12.7 mm) (75 mm only)
$\mathrm{E}=$ Connections
G = Standard Straight Threaded Port with internal terminals, M20x1.5 (75 mm only)
$\mathrm{N}=$ NPT Threaded Port via Adapter with Internal Terminals, $1 / 2^{\prime \prime}$ NPT (75 mm only)
I = Intercontec Style - Exlar standard, M23 Style Connector

F = Mounting
C = Rear Clevis
G = Metric Rear Clevis
D = Double Side Mount
K = Metric Double Side Mount
E = Extended Tie Rod
$M=$ Metric Extended Tie Rod
F = Front Flange
$\mathrm{R}=$ Rear Flange
$\mathrm{T}=$ Side Trunnion
Q = Metric Side Trunnion
G = Rod End
$M=$ Male US Standard Thread ${ }^{1}$
A = Male Metric Thread ${ }^{1}$
F = Female US Standard Thread ${ }^{1}$
$B=$ Female Metric Thread ${ }^{1}$
HH = Feedback Type
HD = Analog Hall Device
IE = Incremental Encoder, 8192 count resolution
AF $=$ Absolute Feedback ${ }^{9}$
III-II = Motor Stator, All 8 Pole
TDX060 Stator Specifications
1B8-50 = 1 Stack, 48 VDC, 5000 rpm
2B8-50 $=2$ Stack, 48 VDC, 5000 rpm
$3 B 8-40=3$ Stack, 48 VDC. $4000 \mathrm{rpm}^{2}$

TDX075 Stator Specifications
1B8-30 = 1 Stack, 48 VDC, 3000 rpm
2B8-30 $=2$ Stack, 48 VDC, 3000 rpm
3B8-20 = 3 Stack, 48 VDC, 2000 rpm ${ }^{2}$
JJJ = Voltage
$048=12-48$ VDC
KKK = Option Board
SIO = Standard IO Interconnect
IA4 $=4-20 \mathrm{~mA}$ Analog I / O
EIP = SIO plus Ethernet/IP with M12 connector
EIN = SIO plus Ethernet/IP without M12 connector ${ }^{7}$
PIO = SIO plus Profinet IO with M12 connector
PIN = SIO plus Profinet IO without M12 connector ${ }^{7}$
TCP = SIO plus Modbus TCP with M12 connector
TCN = SIO plus Modbus TCP without M12 connector ${ }^{9}$

MM $=$ Mechanical Options ${ }^{3}$
AR = External Anti-rotate
L1/2/3 = External Limit Switches ${ }^{4}$
RB = Rear Brake
$\mathrm{PB}=$ Protective Bellows ${ }^{6}$
SR $=$ Splined Main Rod ${ }^{5,8}$

For options or specials not listed above or for extended temperature operation, please contact Exlar

NOTES:

1. Chrome-plated carbon steel. Threads not chrome-plated.
2. Not available on 0.1 inch lead.
3. For extended temperature operation consult factory for model number.
4. Limit switch option requires AR option.
5. This option is not sealed and is not suitable for any environment in which contaminants come in contact with actuator and may enter the actuator.
6. Not available with extended tie rod mounting option.
7. Requires customer supplied Ethernet cable through I/O port for Class 1 Division 2 compliance only.
8. Consult Exlar if ordering splined stainless steel main rod.
9. When ordering a TDM, RDM or RDG 60 mm or other sizes with top mounted connectors the battery backup for AF feedback must be mounted externally. A DIN rail mounted board (Exlar PN 48224) and battery (PN T2BAT2) are supplied.

Tritex II DC Rotary Ordering Guide

RDM/G = Motor Type
RDM = Tritex || DC Rotary Motor
RDG = Tritex II DC Rotary Gearmotor
AAA = Frame Size
$060=60 \mathrm{~mm}$
$075=75 \mathrm{~mm}$
$090=90 \mathrm{~mm}$
$\mathrm{BBB}=$ Gear Ratio
Blank $=$ RDM
Single Reduction Ratios
$004=4: 1 \quad 005=5: 1 \quad 010=10: 1$
Double Reduction Ratios (NA on 75 mm)
$016=16: 1 \quad 020=20: 1$
$025=25: 1 \quad 040=40: 1$
$050=50: 1 \quad 100=100: 1$
C = Shaft Type
$K=$ Keyed
D = Connections
G = Standard straight threaded port with internal terminals, M20x1.5 (75 \& 90 mm only)
$N=$ NPT threaded port internal terminals, $1 / 2^{\prime \prime}$ NPT
($75 \& 90 \mathrm{~mm}$ only)
I = Intercontec style - Exlar standard, M23 Style Connector
$\mathrm{E}=$ Housing Options
$\mathrm{G}=$ = Exlar Standard
$\mathrm{F}=$ Brake Options
$\mathrm{S}=$ No Brake, Standard
$\mathrm{B}=$ Electric Brake, 24 VDC
$\mathrm{GG}=$ Feedback Type
HD $=$ Analog Hall Device
IE $=$ Incremental Encoder, 8192 Count Resolution
AF $=$ Absolute Feedback ${ }^{3}$

HHH-HH = Motor Stators - All 8 Pole
RDM/G060 Stator Specifications
1B8-50 $=1$ Stack, 48 VDC, 5000 rpm
$2 B 8-50=2$ Stack, 48 VDC, 5000 rpm $3 B 8-40=3$ Stack, 48 VDC, 4000 rpm

RDM/G075 Stator Specifications
$1 \mathrm{B8} 8-40=1$ Stack, 48 VDC, 4000 rpm 2B8-30 $=2$ Stack, 48 VDC, 3000 rpm $3 B 8-20=3$ Stack, 48 VDC, 2000 rpm

RDM/G090 Stator Specifications 1B8-33 $=1$ Stack, 48 VDC, 3300 rpm $2 \mathrm{B8}-18=2$ Stack, 48 VDC, 1800 rpm $3 B 8-14=3$ Stack, 48 VDC, 1400 rpm

III = Voltage
$048=12-48 \mathrm{VDC}$
JJJ = Option Board
SIO = Standard I/O Interconnect
IA4 $=+4-20 \mathrm{~mA}$ Analog $/ / 0$
EIP = SIO plus EtherNet/IP with M12 connector EIN $=$ SIO plus EtherNetIP without M12 connector ${ }^{2}$ PIO $=$ SIO plus Profinet $I O$ w/M12 connector PIN $=$ SIO plus Profinet IO without M12 connector ${ }^{2}$ TCP = SIO plus Modbus TCP w/M12 connector TCN = SIO plus Modbus TCP without M12 connector ${ }^{2}$

For options or specials not listed above or for extended temperature operation, please contact Exlar

NOTES:

1. For extended temperature operation consult factory for model number.
2. Requires customer supplied Ethernet cable through I/O port for Class 1 Division 2 compliance only. Also N/A on 60 mm .
3. When ordering a TDM, RDM or RDG 60 mm or other sizes with top mounted connectors the battery backup for AF feedback must be mounted externally. A DIN rail mounted board (Exlar PN 48224) and battery (PN T2BAT2) are supplied.

Tritex II DC Ordering Guide

Cables and Accessories

Tritex II DC Series Cable \& Accessories	Part No.
Communications Accessories - Tritex uses a 4 pin M8 RS485 communications connector	
Recommended PC to Tritex communications cable-USB/RS485 to M8 connector - xxx = Length in feet, 006 or 015 only	CBL-T2USB485-M8-xxx
Multi-Drop RS485 Accessories	
RS485 splitter - M8 Pin plug to double M8 Socket receptacle	TT485SP
Multidrop Communications Cable M8 to M8 for use with TT485SP/RS485 splitter - xxx = Length in feet, 006 or 015 only	CBL-TTDAS-xxx
"G" Connection Accessories (N/A for 60 mm)	
Nickel plated cable gland- $\mathrm{M} 20 \times 1.5-\mathrm{CE}$ shielding- 2 required	GLD-T2M20 x 1.5
Power cable prepared on one end for use with GLD-T2M20 $1.5 \mathrm{xxx}=$ Length in ft, Standard lengths 015, 025, 050, 075, 100	CBL-TDIPC-RAW-xxx
I/O cable prepared on one end for use with GLD-T2M20 $1.5 \mathrm{xxx}=$ Length in ft , Standard lengths $015,025,050,075,100$	CBL-T2IOC-RAW-xxx
"N" Connection Accessories (N/A for 60 mm)	
M20 $\times 1.5$ to $1 / 2^{\prime \prime}$ NPT threaded hole adapter for use with conduit	ADAPT-M20-NPT1/2
"l" Connection	
Power cable with M23 8 pin $\mathrm{xxx}=$ Length in feet, std lengths 015, 025, 050, 075, 100	CBL-TTIPC-SMI-xxx
I/O cable with M23 19 pin xxx = Length in feet, std lengths 015, 025, 050, 075, 100	CBL-TTIOC-SMI-xxx
Multi-Purpose Communications Accessories for long runs, requires terminal block interconnections	
USB to RS485 convertor/cable - USB to RS485 flying leads - xxx = Length in feet, 006 or 015 only	CBL-T2USB485-xxx
Communications cable M8 to flying leads cable $\mathrm{xxx}=$ Length in feet, standard lengths $015,025,050,075,100$	CBL-TTCOM-xxx
Option Board Cables and Accessories	
EIP, PIO and TCP option Ethernet cable - M12 to RJ45 cable xxx = Length in feet, standard lengths 015, 025, 050, 075, 100.	CBL-T2ETH-R45-xxx
Electrical Accessories	
48VDC, 10Amp Unregulated Power Supply	TTPS1048
48VDC, 15Amp Unregulated Power Supply	TTPS1548
Shunt resistor used for Dynamic Braking	TTSR1
Replacement -AF Battery - 75 mm frame only used for absolute feedback option	54108
Replacement -External Battery, Absolute Feedback option only (60 mm frame)	T2BAT2
Replacement -AF Battery Board, T2BAT2 not included, DIN Rail mounted, Absolute Feedback option only (60mm frame)	48224
Surge Filter DIN rail mounted	TDCESF1
Replacement Normally Closed External Limit Switch (Turck Part No. BIM-UNT-RP6X)	43404
Replacement Normally Open External Limit Switch (Turck Part No. BIM-UNT-AP6X)	43403
Mechanical Accessories	
Clevis Pin for TDX060 Rod Clevis \& Rear Clevis	CP050*
Clevis Pin for TDX075 Rear Clevis	CP075
Spherical Rod Eye for TDX060 male "M" rod end 3/8-24 thread	SRM038
Spherical Rod Eye for TDX075 male "M" rod end 7/16-20 thread	SRM044
Rod Eye for TDX075 male "M" rod end 7/16-20 thread	RE050
Rod Clevis for TDX060 male " M " rod end 3/8-24 thread	RC038
Rod Clevis for TDX075 male "M" rod end 7/16-20 thread	RCO50
Jam Nut for TDX060 male rod end, 3/8-24	JAM3/8-24-SS
Jam Nut for TDX075 male rod end, 7/16-20	JAM7/16-20-SS

CBL-T2USB485-M8-xxx
Our recommended communications cable. No special drivers or setup required for use with MS Windows ${ }^{\top \mathrm{M}}$.

CBL-TTIOC-SMI-xxx

CBL-TTCOM-xxx
Use with CBL-T2USB485-xxx
for long cable runs.

CBL-T2USB485-xxx
Use for terminal connections with CBL-TTCOM for long cable runs. No special drivers or setup required for use with MS Windows ${ }^{\text {TM }}$.

CBL-TTIPC-SMI-xxx

CBL-TTDAS-xxx
For use with TT485SP for multi-drop applications.

TT485SP
RS485 communications splitter. Use to daisy-chain multiple Tritex actuators.

TDCESF1

Surge filter designed for use on Tritex 48 VDC rotary and linear actuators provides EFT/B and surge disturbance immunity to IEC/EN 61800-3:2004-08 Second Environment (industrial) levels. Electrical Fast Transient/Burst (EET/B) and surge disturbances are caused by a number of events including switching inductive loads, relay contact bounce, power system switching activity or faults, nearby lightning strikes, etc.

[^0]: Up-to-date certifications for all products shown on www.exlar.com.

[^1]: * Ratings based on $25^{\circ} \mathrm{C}$ conditions. ** Continuous input current rating is defined by UL and CSA. *** T2X peak force for 0.1 inch lead is $2700 \mathrm{lbf}(12010 \mathrm{~N})$

[^2]: *Test data derived using NEMA recommended aluminum heatsink 10 " x 10 " x $3 / 8^{\prime \prime}$ at $40^{\circ} \mathrm{C}$ ambient.

[^3]: * Add 1.61 inches to dimensions " A ", " B " and " D " if ordering a brake. Add 1.2 inches to dimensions " A ", " C " and " D " and dimension if ordering a splined Δ main rod.
 **Add 2 in (50.8 mm) to dimension "E" if ordering protective bellows.
 Pre-sale drawings and models are representative and are subject to change. Certified drawings and models are available for a fee. Consult your local Exlar representative for details.

[^4]: * Add 2.33 inches to dimensions "A", "B" and "D" if ordering a brake. Add 1.77 inches to dimensions " A ", " C " and " D " and
 dimension if ordering a splined \triangle main rod.
 **Add 2 in $(50.8 \mathrm{~mm})$ to dimension " E " if ordering protective bellows.
 Pre-sale drawings and models are representative and are subject to change. Certified drawings and models are available for a fee. Consult your local Exlar representative for details.

[^5]: Pre-sale drawings and models are representative and are subject to change. Certified drawings and models are available for a fee. Consult your local Exlar representative for details.

[^6]: Pre-sale drawings and models are representative and are subject to change. Certified drawings and models are available for a fee. Consult your local Exlar representative for details.

[^7]: Pre-sale drawings and models are representative and are subject to change. Certified drawings and models are available for a fee. Consult your local Exlar representative for details.

[^8]: Pre-sale drawings and models are representative and are subject to change. Certified drawings and models are available for a fee. Consult your local Exlar representative for details.

[^9]: Pre-sale drawings and models are representative and are subject to change. Certified drawings and models are available for a fee. Consult your local Exlar representative for details.

[^10]: *Power supply current is based on software current limit, not thermal limit. Consideration for peak current should also be considered when sizing power supplies.
 ${ }^{* *}$ Rating based on $40^{\circ} \mathrm{C}$ ambient conditions.

[^11]: *Test data derived using NEMA recommended aluminum heatsink $10^{\prime \prime} \times 10^{\prime \prime} \times 3 / 8^{\prime \prime}$ at $40^{\circ} \mathrm{C}$ ambient.

[^12]: Pre-sale drawings and models are representative and are subject to change. Certified drawings and models are available for a fee. Consult your local Exlar representative for details.

[^13]: Pre-sale drawings and models are representative and are subject to change. Certified drawings and models are available for a fee. Consult your local Exlar representative for details.

[^14]: Pre-sale drawings and models are representative and are subject to change. Certified drawings and models are available for a fee. Consult your local Exlar representative for details.

[^15]: Pre-sale drawings and models are representative and are subject to change. Certified drawings and models are available for a fee. Consult your local Exlar representative for details.

